奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 260|回复: 0

柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱...

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-17 13:42:12 | 显示全部楼层 |阅读模式
扫码加微信
柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱导表达
彭蕴,雷天刚,邹修平,张靖芸,张庆雯,姚家欢,何永睿,李强,陈善春

(西南大学/中国农业科学院柑桔研究所国家柑桔品种改良中心,重庆 400712)

摘要:【目的】前期根据转录组数据挖掘柑橘单核苷酸多态性(single nucleotide polymorphism,SNP)位点,通过关联分析获得14个与柑橘溃疡病耐/感性关联的SNP。以此为基础,本研究利用柑橘杂交群体验证这些位点与柑橘溃疡耐/感性的相关性,以期获得显著相关的SNP,并对其相关的基因进行柑橘溃疡病菌(xanthomonas citri subsp. citri,Xcc)和植物激素诱导表达分析。【方法】以抗病和敏感柑橘品种及其杂交F1代群体共143个材料为试材,采用离体叶片针刺接种法进行溃疡病抗性鉴定;利用高分辨率熔解曲线(high resolution melting,HRM)技术,对F1群体进行SNP分型;使用DPS软件对F1群体的溃疡病耐/感性表型和SNP基因型进行相关分析;实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)分析其中一个SNP相关的柑橘钙依赖性蛋白激酶基因(calcium-dependent protein kinase gene,CDPK)的诱导表达模式。【结果】供试杂交F1代群体的病斑面积在0.75—3.29 mm2;病情指数在30.2—100,而抗病品种‘金弹’病情指数为11.1,敏感品种‘冰糖橙’病情指数为100。病情指数较低的杂交后代,其亲本至少有1个为耐病性品种,母本耐病性强的居多。根据病情指数确定免疫材料1个,高抗17个,中抗31个,中感38个,高感56个。SNP分型结果显示,14个SNP位点在143个供试材料间均有多态性,可分为3种不同的基因型,2种纯合型和1种杂合型。简单相关分析结果表明,多个SNP位点的基因型与病斑面积及病情指数相关性显著。典型相关分析结果显示,其中5个SNP位点与病斑面积相关性较高,相关系数绝对值均>0.2,其编号分别为HP31、HP42、HP85、HP87、HP170,可利用这5个SNP位点的基因型预测柑橘溃疡病耐性的强弱。其中SNP位点HP31位于CsCDPK(CAP ID: Cs4g10370)的编码区,对柑橘离体叶片接种溃疡病菌诱导处理6、12、24、48和72 h后进行基因相对表达量分析,发现‘金弹’(高抗)、‘新生系3号椪柑’(中抗)和‘冰糖橙’(高感)中该基因的表达量均呈先升后降趋势,且均在48 h其相对表达量达到最高;接菌处理后12 h,‘金弹’中该基因的相对表达量为对照的3倍,而‘新生系3号椪柑’和‘冰糖橙’中无明显差异。此外,CsCDPK受水杨酸(SA)、茉莉酸甲酯(MeJA)和脱落酸(ABA)诱导表达,且在不同溃疡病耐/感性品种中该基因诱导表达的模式不同。【结论】获得5个与溃疡病耐/感性显著相关的SNP,可用作柑橘溃疡病耐/感性筛选标记。SNP位点HP31相关的CsCDPK受溃疡病菌和SA、MeJA和ABA诱导表达,该基因可能在柑橘应答溃疡病菌侵染的信号转导过程中具有重要功能。

关键词:柑橘溃疡病;柑橘溃疡病菌;单核苷酸多态性;钙依赖性蛋白激酶基因;诱导表达

0 引言
【研究意义】柑橘溃疡病(citrus bacterial canker,CBC)是世界柑橘产业的一种极具威胁性的检疫性病害,现已在30多个国家和地区发生[1]。目前,柑橘溃疡病没有特别有效的防治药剂,生产上主要采用喷施铜制剂、铲除病树等措施来防止病害的严重发生。铜制剂和农业抗生素的大量施用不仅增加生产成本,而且还会对环境和人造成一定影响[2]。开发与柑橘溃疡病耐/感性相关联的单核苷酸多态性(single nucleotide polymorphism,SNP)标记[3],分子标记辅助选择(marker-assisted selection,MAS),将大幅度提高柑橘溃疡病抗性育种的效率[4]。【前人研究进展】大量研究表明,培育抗性品种是防治病虫害最经济有效的方法之一[5],而杂交育种是柑橘新品种选育的主要途径之一[6]。生产实践证明,利用耐病品种作亲本,选育的新品种对溃疡病多具有较强的耐性[7-8]。传统的溃疡病抗性鉴定方法必须采用大量的离体叶片或田间活体接种溃疡病菌(xanthomonas citri subsp. citri,Xcc)进行评价,这种方法不仅费力费时,且鉴定结果还易受环境温度和湿度等因素的影响[9]。目前,分子标记广泛用于优良性状基因型选择以改良作物品种[10-12]。KIM等[13]通过全基因组序列分析发现,番茄青枯病感病品种和抗病品种之间存在多态性SNP,并可利用高分辨率熔解曲线(high resolution melting,HRM)技术有效鉴别抗性基因型,实现抗青枯病番茄品种的辅助选择;在苹果中利用分子标记定位到苹果白粉病抗性基因Pl-1[14]以及苹果黑星病抗性基因Vb[15];刘升锐[16]构建了柑橘高密度遗传连锁图谱,利用分子标记分析了控制枳落叶性状的基因位点;Barba等[17]通过分子标记鉴定出葡萄白粉病抗性和敏感性位点,确定了葡萄与白粉病抗性相关的SNP;据报道,柑橘中也开发出与柑橘杂色萎黄病[18]、柑橘麻风病病毒[19]等抗病性相关的分子标记。【本研究切入点】目前,柑橘溃疡病抗性相关SNP的研究尚未见报道,笔者研究室前期基于转录组数据挖掘SNP位点,并以柑橘自然群体为材料,采用关联分析法,筛选到14个与柑橘溃疡病抗性关联的SNP。本研究将进一步利用耐/感柑橘品种的杂交F1群体,采用离体叶片针刺接种法鉴定溃疡病抗性表型,利用HRM技术进行SNP分型,采用相关性分析,验证这14个柑橘溃疡病抗性关联SNP的可靠性。【拟解决的关键问题】筛选与溃疡病耐/感性相关的SNP,以期获得可用于柑橘溃疡病抗性分子标记辅助选择的SNP,并分析SNP相关基因柑橘钙依赖性蛋白激酶基因(CsCDPK)受溃疡病菌和激素诱导处理后的表达情况,为基因功能研究打下基础。

1 材料与方法
试验于2018年4月至2019年6月在西南大学柑桔研究所国家柑桔品种改良中心完成。

1.1 材料
以对溃疡病高抗的品种‘金弹’、中抗品种‘新生系3号椪柑’和敏感品种‘冰糖橙’,以及耐/感品种杂交F1代群体共143个材料为试材,其中‘沙田柚’♀ב梁平柚’♂杂交后代27个、‘沃柑’♀ב米柑’♂后代9个、‘茂谷柑’♀ב椪柑’♂后代17个、‘清见’♀ב冰糖橙’♂后代21个、‘沃柑’♀ב南丰蜜橘’♂后代15个、‘清见’♀ב南丰蜜橘’♂后代18个、‘清见’♀ב长叶香橙’♂后代33个。F1群体经SSR分子标记鉴定均为真实杂种。叶片均于2018年采自中国农业科学院柑桔研究所国家柑桔品种改良中心育种圃。

1.2 方法
1.2.1 溃疡病抗性评价 采用离体叶片针刺接种法进行溃疡病抗性鉴定,溃疡病菌为亚洲种A株系(由柑桔研究所胡军华老师提供),该病原菌接种‘晚锦橙’发病率高达91%,病情指数为73.3,病斑面积为4.5 mm2,单个病斑病原菌含量为2.99×106 cfu/mm2。接种方法参照文献[20],选取成熟度一致且完全展开的春梢叶片,经75%的乙醇擦拭消毒后用灭菌水清洗干净,无菌脱脂棉擦干叶片,用接种针(直径为0.5 mm)在每片叶片的背面扎取4—6组小孔,每组6个;移液枪吸取1 μL浓度为105 cfu/mL柑橘溃疡病菌悬液接种到伤口,同时对照组接种无菌水。运用软件Image J V1.47T统计病斑面积(lesion area,LA),按照病斑面积大小将病情分为6个等级,0级(LA<0.3 mm2),1级(0.3 mm2<LA≤0.6 mm2),3级(0.6 mm2<LA≤0.9 mm2),5级(0.9 mm2<LA≤1.2 mm2),7级(1.2 mm2<LA≤1.5 mm2),9级(LA>1.5 mm2),根据公式计算病情指数(disease index,DI),DI=100×Σ[(各级病斑数×相应级数值)/(病斑总数×最大级数)]。根据病情指数进行抗病性分级,病情指数≤20为免疫,20—40之间为高抗,40—60之间为中抗,60—80之间为中感,80—100为高感。

1.2.2 SNP分型 采用EASY spin植物DNA快速提取试剂盒(购自北京艾德莱公司)提取叶片DNA。14个SNP位点基因分型的扩增引物(表1)由英维捷基(上海)贸易有限公司合成。PCR反应采用20 μL体系:13.4 μL H2O,0.3 μL 10 mmol·L-1上、下游引物,2 μL 10×buffer,1.6 μL 50 ng DNA,10 mmol·L-1dNTP,0.8 U DNA Taq酶。反应条件:94℃预变性3 min;94℃ 30 s,58℃ 30 s,72℃ 1 min,共30个循环;72℃延伸5 min。在高分辨率熔解曲线(HRM)仪LightScanner 96(Idaho Technology Inc.)上进行样品SNP分型。

表1 SNP位点及高分辨率熔解曲线分型PCR引物

Table 1 SNP loci and the PCR primers used for SNP genotyping by HRM


1.2.3 CsCDPK生物信息学分析 从甜橙基因组数据库(http://citrus.hzau.edu.cn/orange/)下载CsCDPK的核苷酸序列。利用Vector NTI软件寻找开放阅读框(ORF),翻译出氨基酸序列;利用在线软件预测氨基酸序列的分子量、理论等电点(https://web.expasy.org/ protparam/)[21]、基因内含子、外显子数及ORF范围(http://gsds.cbi.pku.edu.cn/)、基因的功能结构(http:// pfam.xfam.org/)、跨膜结构域(http://www.cbs.dtu.dk/ services/TMHMM/)。

1.2.4 CsCDPK诱导表达分析 以柑橘溃疡病敏感品种‘冰糖橙’、中抗品种‘新生系3号椪柑’和高抗品种‘金弹’为试材,每个品种选3株树,分别从每株的树冠外围选取24片完全展开且成熟度一致的春梢叶片混合为1个样品,设置3个生物学重复。叶片清洗干净后用75%酒精进行表面消毒,无菌水清洗3次,置于无菌培养皿中;用注射器将105 cfu/mL的溃疡病菌悬液注射入叶片下表皮,每个样品均处理18片叶;用浸有10 μmol·L-1水杨酸(SA)溶液、100 μmol·L-1茉莉酸甲酯(MeJA)溶液和100 μmol·L-1脱落酸(ABA)溶液的无菌脱脂棉覆盖不同品种叶片的叶柄部位。分别在处理后0、6、12、24、48、72 h从4种处理的样品中随机选取3片叶用刀片将处理部位切取下来混合,以无菌水处理的各品种为对照。用EASY spin 植物RNA快速提取试剂盒(购自北京艾德莱公司)提取总RNA[22],Prime ScriptTM RT reagent Kit 反转录试剂盒(TaKaRa公司)将RNA反转录成cDNA。特异性扩增引物(表2)由英维捷基(上海)贸易有限公司合成。以actin为内参基因,采用实时荧光定量PCR(qRT-PCR)技术分析CsCDPK的相对表达量。采用20 μL反应体系:10 μL 2×SYBRG PCR Master Mix,5 μL cDNA,各0.5 μL 10 mmol·L-1引物,4 μL H2O。扩增反应在7500 Fast Real-Time PCR System(Applied Biosystem)上进行,反应程序:95℃10 min;95℃15 s;60℃1 min;共40个循环。

表2 实时荧光定量PCR引物

Table 2 primer sequences for qRT-PCR


1.2.5 数据分析 根据SNP基因型进行赋值,A/A和T/T赋值为-1,G/G和C/C赋值为1,杂合型均赋值为0。运用DPS软件分析供试材料溃疡病抗性表型(病斑面积和病情指数)和SNP基因型的相关性;运用Excel软件采用ΔΔCT法计算基因相对表达量。

2 结果
2.1 F1群体溃疡病抗性鉴定
采用针刺接种法对143个供试材料进行溃疡病抗性离体鉴定,接菌10 d后拍照统计计算病斑面积,以敏感品种‘冰糖橙’和高抗品种‘金弹’作对照,根据病斑面积大小分级,计算材料的病情指数。结果显示,杂交F1代群体病斑面积在0.75—3.29 mm2,而‘金弹’病斑面积为0.5 mm2,‘冰糖橙’病斑面积为3.69 mm2;杂交F1代群体的病情指数在30.2—100,对照‘金弹’的病情指数为11.1,‘冰糖橙’为100。发病程度较低的杂交后代,其亲本至少有1个为耐病性品种,母本耐病性强的居多。但母本对溃疡病敏感而父本耐病性强的杂交组合其F1代表现耐病性强的也较多,如‘沙田柚’♀ב梁平柚’♂、‘沃柑’♀ב南丰蜜橘’♂等杂交组合,其F1代中抗性表型为中抗以上的占近1/3。根据病情指数分级,143个供试材料中对溃疡病抗性表现为免疫的1个(‘金弹’),高抗17个,中抗31个,中感38个,高感的56个。

2.2 SNP分型及相关性分析
采用HRM技术对143个供试材料进行SNP分型。结果显示,验证的14个SNP位点在供试材料间均有多态性,可分为3种不同的基因型,2种纯合型和1种杂合型。如图1为1个SNP位点(HP31)的HRM分型结果,143个供试材料被准确地区分为A/A、G/G和A/G 3种基因型。

根据SNP分型结果对143个供试材料SNP位点的基因型进行赋值,运用DPS软件对供试材料的基因型值和病斑面积及病情指数进行简单相关和典型相关分析。简单相关分析结果表明,多个SNP位点基因型与病斑面积及病情指数相关性显著。而典型相关显著性检验结果显示,供试材料SNP基因型与病斑面积相关系数为0.4849,p=0.0016<0.05,相关性显著(表3);SNP基因型与病情指数相关系数0.3796,p=0.088>0.05,两者不相关。典型相关分析结果显示,与病斑面积相关系数绝对值>0.2的SNP位点5个,分别是HP31、HP42、HP85、HP87、HP170(表4),表明这5个SNP与柑橘溃疡病病斑面积相关性较高,可作为柑橘溃疡病耐性材料筛选的候选SNP标记。其中HP31为CsCDPK编码区靠近5′ UTR端的SNP。

width=467.9,height=152.6
图1 供试材料(SNPHP31)分型结果

Fig. 1 Melting curve and genotyping of locus 31

表3 典型相关显著性检验结果

Table 3 Significance test results of canonical correlation


表4 典型相关系数矩阵

Table 4 Typical correlation coefficient matrix


2.3 CsCDPK生物信息学分析
CsCDPK位于基因组第4号染色体上,编号为Cs4g10370,全长5 162 bp(图2-A)。结构分析发现该基因由13个外显子组成(图2-B)。特定结构域分析发现蛋白激酶结构域(PKinase)位于1—236个氨基酸的位置;此外还含有4个螺旋-环-螺旋结构域(EF hand)(图2-C)。对CsCDPK进行跨膜区分析,发现在160—180个氨基酸的位置存在20个氨基酸的跨膜区,1—159是在胞内区,181—615为胞外区(图2-D、2-E)。

2.4 CsCDPK诱导表达分析
CsCDPK受溃疡病菌诱导表达,接种后6、12、24、48和72 h,3个品种中基因的相对表达量基本呈逐渐升高再降低的趋势,且均在处理后48 h相对表达量达到最高。接种后6 h,‘金弹’中CsCDPK相对表达量为0.7,而接种后48 h其相对表达量升至7.0;‘冰糖橙’和‘新生系3号椪柑’接种后48 h,基因相对表达量分别升至4.0和1.8,但与接种后6 h相比,表达量升高的幅度不明显;接种后12 h,在高抗品种‘金弹’中CsCDPK相对表达量为对照的3倍,而此时‘新生系3号椪柑’和‘冰糖橙’中该基因相对表达量与对照无明显差异。说明高抗品种‘金弹’可更早地响应溃疡病菌胁迫,并且‘金弹’中响应胁迫的分子信号可迅速地调控CsCDPK大量表达(图3-A)。

width=431.05,height=238.55
A:染色体定位Chromosome localization;B:基因结构Gene structure;C:功能结构域Functional domain;D:跨膜结构Transmembrane structure;E:跨膜区预测Transmembrane domain prediction

图2 CsCDPK生物信息学分析

Fig. 2 bioinformatics analysis of CsCDPK

利用MeJa诱导处理‘金弹’‘新生系3号椪柑’‘冰糖橙’后,CsCDPK相对表达量随时间变化趋势与溃疡病菌处理类似。在处理后6 h CsCDPK相对表达量相对较高,但处理后12 h与对照无明显差异;诱导处理后12—48 h,其相对表达量则呈逐渐升高的趋势(图3-B)。SA诱导处理后,各品种CsCDPK相对表达量变化均呈波动趋势,‘金弹’在处理后24 h和48 h的相对表达量均在5倍左右,但72 h后表达量与对照无明显差异;‘新生系3号椪柑’和‘冰糖橙’CsCDPK相对表达量分别在72 h和48 h达到最高(图3-C)。ABA诱导处理后,‘金弹’中CsCDPK相对表达量变化趋势与溃疡病菌处理的变化趋势大致相反,处理后6、24 h CsCDPK的表达量相对较高,而处理后48 h其表达量较低;‘新生系3号椪柑’和‘冰糖橙’在处理后48 h CsCDPK相对表达量达到最高(图3-D)。

3 讨论
柑橘溃疡病被国内外列为检疫性病害,给世界柑橘产业带来了巨大的经济损失。栽培耐病品种在一定程度上可减轻溃疡病对柑橘生产的影响,目前生产上已有一些对溃疡病耐性较强的品种资源,如‘金柑’‘椪柑’‘南丰蜜橘’及其杂种后代。利用抗性资源进行品种改良是柑橘育种的一个重要方向。近年来,有研究者通过基因编辑技术修饰特定基因位点提高甜橙对溃疡病的抗性[23],其实质是改变敏感品种中特定基因的遗传多态性。因此,利用含有抗性基因(纯合型或杂合型)的品种资源作亲本,采用常规杂交育种方法,经过遗传重组后也可能得到抗性提高的材料。但传统的柑橘育种及溃疡病抗性鉴定方法筛选效率不高,费时费力,若采用杂交育种法与抗性分子标记辅助选择相结合,将大大提筛选效率,加快育种进程。目前,在果树中研究性状关联SNP的报道不少,例如利用桃果肉软化性状相关基因SNP鉴别桃果肉软化程度不同品种[24],木瓜果皮红色和黄色相关SNP[25],利用SNP区分杏甜味和苦味基因型[26]等。本研究在前期通过关联分析发掘的14个与柑橘溃疡病耐/感性关联SNP基础上,利用耐/感品种杂交后代进一步验证这14个SNP与柑橘溃疡病耐/感性的相关性。结果发现,其中至少5个SNP与柑橘的溃疡病病斑面积存在显著相关性,这些SNP的获得为今后柑橘溃疡病抗性材料的筛选鉴定打下了基础。

width=442.85,height=332.5
A:溃疡病菌诱导处理Xcc inductiontreatment;B:茉莉酸甲酯诱导处理MeJa induction treatment;C:水杨酸诱导处理SA induction treatment;D:脱落酸诱导处理ABA induction treatment

图3 溃疡病菌和激素诱导处理3个柑橘品种后不同时间CsCDPK相对表达量

Fig. 3 CsCDPK relative expression in 3 citrus varieties induced by Xcc and exogenous hormones

5个与柑橘溃疡病耐性存在显著相关性的SNP,其中1个为CsCDPK编码区的单核苷酸变异。CDPK是一种重要的调节蛋白[27],1987年Harmon 等在豌豆中首次发现CDPK[28],经过几十年不断研究,发现CDPK广泛存在于植物、绿藻及顶复门原虫等生物中,但不存在于哺乳动物中[29]。CDPK通过识别胞内Ca2+信号,在植物茎和根发育、花粉管生长、气孔开闭、激素信号传导及响应逆境胁迫过程中发挥关键作用[30]。在拟南芥中AtCDPK1(CPK10)和AtCDPK2(CPK11)响应干旱和高盐度诱导[31]。水稻OsCPK12突变体可导致叶片的过早衰老,OsCPK12的过量表达导致其生育期延迟[32]。CDPK在植物激素信号转导中也具有重要作用,CDPK12在拟南芥中普遍表达并定位于细胞质和细胞核[33],CPK12 RNAi株系在种子萌发过程和萌发后的生长中表现出对ABA的极度敏感性[34]。Botella等[35]发现生长素处理能够使绿豆插条CDPK上调表达;Breviario等[36]在ABA信号研究中发现,ABA处理能够抑制水稻胚芽鞘的伸长,同时也抑制了水稻CDPK cDNA(OsCDPK11)的mRNA表达。植物能够成功抵御微生物的侵染,主要是依靠早期对病原体的识别,从而诱导多种信号传导途径以启动多元防御反应。在基因间反应中抑制病原体则需要植物抗性基因,使得携带相应无毒基因的病原体产生抗体,ROMEIS等[37]在转基因烟草植株研究中发现CDPK参与Cf-9(番茄的抗真菌病原体Cladosporium fulvum基因)和AVR-9(Cf-9对应的无毒性基因)介导植物防御反应信号的转导,AVR-9可引起NtCDPK2磷酸化从而使其活化。近年的研究表明CDPK在从枝菌根、根瘤菌-宿主植物共生体系中起重要的调控作用,如OsCDPK18上调表达参与水稻菌根早期共生[38]。大豆中CDPK通过磷酸化调控根瘤特异蛋白Nodulin26,从而参与调控根瘤的发生[39]。本研究对柑橘中与溃疡病抗性相关SNP的CsCDPK进行生物信息学分析,发现CsCDPK为一个跨膜蛋白,预测其功能可能与信号转导有关。利用溃疡病菌和3种激素对3个耐病性不同品种进行诱导处理,分析该基因的表达量变化,结果发现CsCDPK受溃疡病菌和SA、MeJa和ABA诱导表达,但在不同品种中表达模式不同。SA、MeJa和ABA在植物对逆境胁迫的应答过程中起到至关重要的作用,是植物应答逆境胁迫的重要调控因子。因此,笔者推测CsCDPK可能参与柑橘对溃疡病及其他非生物逆境胁迫信号转导过程的调控。

4 结论
验证的14个SNP位点中,5个SNP与柑橘的溃疡病病斑面积显著相关,可作为柑橘溃疡病耐性筛选的SNP标记。柑橘钙依赖性蛋白激酶基因(CsCDPK)受溃疡病菌和SA、MeJa及ABA诱导表达,该基因可能在柑橘应答溃疡病等逆境胁迫过程中发挥作用。

References

[1] SENDIN L N, Filippone M P. The genetic transformation of sweet orange (Citrus sinensis L. Osbeck) for enhanced resistance to citrus canker: methods and protocols//Transgenic Plants, 2019: 179-190.

[2] Kah M, Navarro D, Kookana R S, Kirby J K, Santra S, Ozcan A, Kabiri S. Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environmental Chemistry, 2019, 16(6): 401-410.

[3] Perkel J. SNP genotyping: six technologies that keyed a revolution. Nature Methods, 2008, 5(5): 447-453.

[4] Dong Q H, Cao X, Yang G, YU H P, NICHOLAS K K, WANG C, FANG J G. Discovery and characterization of SNPs in Vitis viniferaand genetic assessment of some grapevine cultivars. Scientia Horticulturae, 2010, 125(3): 233-238.

[5] BEHLAU F, CANTEROS B I, MINSAVAGE G V, JONES J B, GRAHAM J H. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 2011, 77(12): 4089-4096.

[6] 向旭. 柑桔抗病分子育种研究进展. 分子植物育种, 2006, 4(2): 262-268.

XIANG X. Progresses on molecular breeding for citrus disease resistance. Molecular Plant Breeding,2006, 4(2): 262-268. (in Chinese)

[7] Deng Z A, Xiao S Y, HUANG S, Jr. Gmitter F G. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome, 1997, 40(5): 697-704.

[8] Ling P, Duncan L W, Deng Z, Dunn D, Hu X, Huang S, Jr.Gmitter F G. Inheritance of citrus nematode resistance and its linkage with molecular markers. Theoretical and Applied Genetics, 2000, 100(7): 1010-1017.

[9] 谭李梅, 刘慧, 朱志媚, 周东, 汤甜, 邓子牛. 柠檬自交后代抗柑橘溃疡病的离体鉴定. 湖南农业科学, 2017(3): 58-62.

TAN L M, LIU H, ZHU Z M, ZHOU D, TANG T, DENG Z N. Vitro identification of lemon self-crossed seedlings for the resistance to citrus canker disease. Hunan Agricultural Sciences, 2017(3): 58-62. (in Chinese)

[10] Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L, HUMPHREYS D G, KNOX R E, DEPAUW R M, SINGH A K, CUTHBERT R D, HUCL P, SPANER D. Application of molecular markers to wheat breeding in Canada. Plant Breeding,2013, 132(5): 458-471.

[11] Ribaut J M, Hoisington D. Marker-assisted selection: new tools and strategies. Trends in Plant Science, 1998, 3(6): 236-239.

[12] Liu Z J, Cordesb J F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238(1): 1-37.

[13] Kim B, Hwang I S, Lee H J, Lee J M, Seo E, Choi D, Oh C S. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theoretical and Applied Genetics, 2018, 131(5): 1017-1030.

[14] DUNEMANN F, PEIL A, URBANIETZ A, GARCIA-LIBREROS T. Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breeding, 2007, 126(5): 476-481.

[15] Erdin N, Tartarini S, Broggini G A, Gennari F, Sansavini S, Gessler C, Patocchi A. Mapping of the apple scab-resistance gene Vb. Genome, 2006, 49(10): 1238-1245.

[16] 刘升锐.柑橘高密度遗传连锁图谱的构建及落叶性状的QTL定位[D]. 武汉: 华中农业大学, 2016.

LIU S R. High-density genetic map construction and identification of QTLs controlling deciduous trait in citrus[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)

[17] Barba P, Cadle‐Davidson L, Harriman J, Glaubitz J C, Brooks S, Hyma K, Reisch B. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics, 2014, 127(1): 73-84.

[18] Oliveira R P D, Cristofani M, Machado M A. Genetic mapping for citrus variegated chlorosis resistance. Laranja, 2002, 23(1): 247-261.

[19] Bastianel M, Cristofani-Yaly M, Oliveira A C, Freitas-Astúa J, Garcia A A F, Resende M D V, Rodrigues V, Machado M A. Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata Blanco×C. sinensis L. Osbeck) × C. sinensis L. Osb. Euphytica, 2009, 169(1): 101-111.

[20] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell, Tissue and Organ Culture, 2015, 123(1): 1-13.

[21] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, DE Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40(W1): W597-W603.

[22] 吴柳, 白晓晶, 文庆利, 谢竹, 何永睿, 王丽娟, 陈善春, 邹修平. 柑橘黄龙病病原菌Las在叶圆片嫁接接种的‘锦橙’中早期扩散研究. 园艺学报, 2018, 45(11): 2121-2128.

WU L, BAI X J, WEN Q L, XIE Z, HE Y R, WANG L J, CHEN S C, ZOU X P. Early spread characteristics of Candidatus Liberibacter asiaticus in Jincheng orange (Citrus sinensis Osbeck) by leafdisc grafting. Acta Horticulturae Sinica, 2018, 45(11): 2121-2128. (in Chinese)

[23] Peng A H, Chen S C, Lei T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 2017, 15(12): 1509-1519.

[24] Morgutti S, Negrini N, Nocito F F, Ghiani A, Bassi D, Cocucc M. Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes. New Phytologist, 2006, 171(2): 315-328.

[25] Devitt L C, Fanning K, Dietzgen R G, HOLTON T A. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). Journal of Experimental Botany, 2010, 61(1): 33-39.

[26] Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F. Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010, 6(2): 237-245.

[27] Delormel T Y, Boudsocq M. Properties and functions of calcium‐dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytologist, 2019, 224(2): 585-604.

[28] Harmon A C, Putnam-Evans c, Cormier m j. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiology, 1987, 83(4): 830-837.

[29] 王金磊. 弓形虫钙依赖性蛋白激酶的功能及免疫保护性研究[D].北京: 中国农业科学院, 2017.

WANG J L. Studies of the basic functions and immunoprotective effect of toxoplasma gondii calcium-dependent protein kinases[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

[30] Xu W W, Huang W C. Calcium-dependent protein kinases in phytohormones signaling pathways. International Journal of Molecular Sciences, 2017, 18(11): E2436.

[31] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular and General Genetics, 1994, 244(4): 331-340.

[32] Wang B F, Zhang Y X, Bi Z Z, Liu Q E, Xu T T, Yu N, Cao Y R, Zhu A K, Wu W X, Zhan X D, Anis G B, Yu P, Chen D B, Cheng S H, Cao L Y. Impaired function of the calcium-dependent protein kinase, OsCPK12, leads to early senescence in rice (Oryza sativa L.). Frontiers in plant science, 2019, 10: Article 52.

[33] Zhao R, Sun H L, Mei C, Wang X J, Yan L, Liu R, Zhang X F, WANG X F, ZHANG D P. The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist, 2011, 192(1): 61-73.

[34] Zhao R, Wang X F, Zhang D P. CPK12: A Ca 2+-dependent protein kinase balancer in abscisic acid signaling. Plant signaling and behavior, 2011, 6(11): 1687-1690.

[35] Botella J R, Arteca J M, Somodevilla M, Arteca R N. Calcium-dependent kinase gene expression in response to physiol and chemical stimuli in mungbean (Vigna radiata). Plant Molecular Biology, 1996, 30(6): 1129-1137.

[36] Breviario D, Morello L, Gianì S. Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinase. Plant Molecular Biology, 1995, 27(5): 953-967.

[37] Romeis T, Piedras P, Jones J D. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defence response. The Plant Cell, 2000, 12(5): 803-816.

[38] Campos-Soriano L, Gómez-Ariza j, Bonfante P, SAN Segundo B. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2011, 11: 90.

[39] Weaver C D, Roberts D M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry, 1992, 31(37): 8954-8959.

Verification of SNPs Associated with Citrus bacterial Canker Resistance and Induced Expression of SNP-related Calcium-Dependent Protein Kinase Gene
Peng Yun, Lei TianGang, Zou XiuPing, Zhang JingYun, Zhang QingWen, Yao JiaHuan, He YongRui, Li Qiang, Chen ShanChun

(National Center for Citrus Variety Improvement, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)

Abstract:【Objective】In the previous study, single nucleotide polymorphisms (SNPs) of citrus varieties were screened based on transcriptome, and 14 SNPs were defined to be associated with citrus bacterial canker (CBC) resistance via association analysis. In this study, it is aimed to verify the correlation between these SNP loci and CBC resistance in order to obtain significantly related SNPs and to find the inducible expression profiles of corresponding genes by plant hormones and xanthomonas citri subsp. citri (Xcc) infection.【Method】The sensitive and resistant varieties and their F1 populations were used for CBC resistance identification via in vitro acupuncture inoculation and SNP-based genotyping was conducted via high resolution melting (HRM) technology. The phenotypes and genotypes were then associated by software DPS, and inducible expression profiles of SNP (HP031) related calcium-dependent protein kinase gene (CDPK) were analyzed by quantitative real-time PCR (qRT-PCR).【Result】The lesion areas of F1 populations ranged from 0.75 to 3.29 mm2, and the disease index ranged from 30.2 to 100, while the resistant variety Jindan had a disease index of 11.1, and disease index of the susceptible variety Bingtangcheng was 100. For the offspring of hybrids with a low disease index, at least one of their parents is a disease-tolerant variety, and most of the female parents have strong disease-tolerance. according to the disease index, the populations could be grouped into immune (1 variety), highly resistant (17), moderately resistant (31), moderately sensitive (38), and highly sensitive (56).The SNP typing results showed that all the 14 SNP loci were polymorphic among 143 test materials, which could be divided into 3 different genotypes, 2 homozygous types and 1 heterozygous type. The results of simple correlation analysis showed that the genotypes of multiple SNP loci were significantly correlated with the lesion area and disease index. The results of canonical correlation analysis showed that the correlation between the 5 SNP loci and the lesion area was high, the absolute values of the correlation coefficients were all >0.2, and their numbers were HP31, HP42, HP85, HP87, and HP170. The genotypes of these 5 SNP loci could be used to predict the tolerance to CBC. SNP HP31 located in the coding region of CsCDPK (CAP ID: Cs4g10370). The expression of CsCDPK was analyzed at 6, 12, 24, 48 and 72 hpi (hours post inoculation), it was found that the expression of CsCDPK all increased first and then decreased, and reached the highest relative expression at 48 hpi in Jindan (highly resistant), Xinshengxi No. 3 (moderately resistant), andBingtangcheng (highly sensitive) varieties. At 12 hpi, the relative expression level of CsCDPK in Jindan was 3 times of that in the control, but there was no significant difference in Xinshengxi No. 3 and Bingtangcheng. Besides, CsCDPK was also differently induced by salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in CBC resistant and sensitive varieties. 【Conclusion】Five SNPs associated with CBC resistance were verified, which can be used for marker-assistant selection. SNP HP31 related gene CsCDPK can be induced by Xcc and phytohormones, which may play an important role in the signal transduction process of citrus response to Xcc.

Key words: citrus bacterial canker (CBC); xanthomonas citri subsp. citri (Xcc); single nucleotide polymorphism (SNP); calcium-dependent protein kinase gene (CDPK); induced expression

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

doi: 10.3864/j.issn.0578-1752.2020.09.010

收稿日期:2019-12-09;

接受日期:2020-01-28

基金项目:国家重点研发计划(2018YFD0201500,2018YFD1000300)、中央高校基本科研业务费(SWU115025,XDJK2018C034)、广西科技重大专项(桂科AA18118046-6)、国家现代农业产业技术体系建设专项(CARS-26)

联系方式:彭蕴,E-mail:pengyun1995@icloud.com。通信作者雷天刚,E-mail:156280591@qq.com。通信作者陈善春,E-mail:scchen@cric.cn

(责任编辑 岳梅)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-11-24 17:19

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表