|
黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征
马原,迟美静,张玉玲, 范庆峰,虞娜,邹洪涛
(沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室,沈阳 110866)
摘要:【目的】分析东北黑土旱地改稻田后土壤团聚体组成及其稳定性、各粒级团聚体有机碳、全氮含量及其13C、15N自然丰度值的动态变化,探讨旱地改稻田后土壤团聚体有机碳、全氮的赋存能力及稳定性,揭示旱地改稻田后土壤团聚体及其有机碳、全氮的演变规律。【方法】选择东北典型黑土旱地土壤(种植大豆年限大于60年,作为对照)和改种不同年限的稻田土壤(3、5、10、17、20和25年,改稻田前种植作物均为大豆),利用土壤团聚体湿筛分离技术和稳定同位素分析技术,研究旱地改稻田后土壤团聚体有机碳、全氮的动态变化特征。【结果】在0—60 cm土层,与对照土壤相比,改种水稻各年限土壤中2—0.25 mm团聚体组成有所减少,0.25—0.053 mm和<0.053 mm团聚体组成有所增加,>2 mm团聚体组成的变化无明显规律,但旱地改稻田不同年限均以2—0.053 mm团聚体为主;团聚体平均重量直径(MWD)与>2 mm团聚体组成之间呈显著线性正相关关系(P<0.01),与0.25—0.053 mm、<0.053 mm团聚体组成之间均呈显著线性负相关关系(P<0.01或P<0.05);水稳性团聚体组成变化受水稻种植年限和土层深度的显著影响,而MWD的变化则受土层深度的显著影响。与对照土壤相比,在0—40 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降,在改种水稻3—25年间均随水稻种植年限延长大体上呈增加趋势。总体上,2—0.25 mm、0.25—0.053 mm团聚体是赋存有机碳和全氮的主要粒级;在0—60 cm土层,>2 mm团聚体有机碳、全氮含量与其团聚体组成之间呈显著正相关关系(P<0.01或P<0.05),在0—20 cm土层,2—0.25 mm团聚体有机碳、全氮含量与其团聚体组成之间也呈显著正相关关系(P<0.01或P<0.05);<2 mm团聚体有机碳和全氮含量的变化受水稻种植年限影响显著,而>0.25 mm团聚体有机碳和全氮含量的变化则受土层深度影响显著。与对照土壤相比,各粒级团聚体中δ13C在改种水稻3年时均明显增加,在改种水稻5年时均明显下降,在改种水稻5—25年间变化不明显,各粒级团聚体中δ15N在改种水稻25年间均略有下降。总体上,在改稻田3—25年间,团聚体中δ13C、δ15N的变化受水稻种植年限和土层深度的显著影响,其数值均随粒级的减少而增加,相同年限各粒级团聚体δ13C随着土层的加深而增大,δ15N无明显变化规律。【结论】东北典型黑土旱地改稻田25年间,土壤中非水稳性大团聚体遭受破坏形成了粒径较小的团聚体,2—0.053 mm水稳性团聚体是有机碳、全氮固存的主要载体,较小粒级团聚体赋存的有机碳较为稳定,其稳定性随水稻种植年限延长、土层加深而增强。
关键词:黑土;旱地;稻田;水稳性团聚体;有机碳;全氮;13C和15N 自然丰度
0 引言
【研究意义】土壤团聚体是土壤结构的基础,是由土壤颗粒和各种有机质(微生物、植物、动物残渣及其分泌物)胶结而成,不同粒级团聚体的分布影响着土壤养分的储存、土壤生物学特性和土壤结构[1-2]。因此,土壤团聚体的稳定性和分布与土壤有机碳和全氮的固存密切相关[3],对于研究土壤结构和有机碳、全氮的固存和转化有重要意义[4]。东北黑土有机质含量丰富、结构良好。近年来,随着农业产业结构的调整,黑土旱地改稻田面积逐年增加,这一土地利用方式的改变及土壤环境条件的变化,影响了土壤有机碳、全氮的数量[5],进而影响土壤中各粒级水稳性团聚体的数量、分配及其稳定性[6]。不同粒级团聚体及其有机碳、全氮的赋存数量的变化可以用来表征或反映不同环境条件下土壤质量的变化[7-8],因此,研究东北典型黑土旱地改稻田后土壤水稳性团聚体及其有机碳、全氮的动态变化对于揭示黑土有机碳、全氮的演变特征具有重要意义。【前人研究进展】水稻土是长期人为水耕熟化的一类特殊类型土壤,具有较高的固碳潜力。许多研究表明,长期植稻有利于土壤有机碳的固存[9-10],且与旱地土壤相比有机碳含量较高[5,11-14],水稻种植过程主要通过物理保护和腐殖化过程来富集和固存土壤有机碳[10],通过土壤团聚体对有机碳的保护机制可以解释土壤有机碳的固存和分解[15]。研究发现,太湖地区水稻土中主要以2—0.25 mm、0.25—0.02 mm团聚体为主[15];浙江平原区植稻17年土壤中2—0.25 mm团聚体是有机碳的主要载体[16];红壤荒地开垦种植水稻20年后,水稳性大团聚体是有机碳、全氮的主要载体[17];慈溪和上虞地区植稻300年间,大团聚体有所增多,微团聚体减少,大团聚体是土壤有机碳的主要载体[8]。但也有研究发现,慈溪地区植稻30—2 000年间,0.25—0.053 mm团聚体逐渐减少,<0.053 mm团聚体增加,土壤有机碳主要分布在0.25—0.053 mm团聚体中[18]。稻田转变为蔬菜地20年后>0.25 mm团聚体含量及其固碳能力会下降[19];本课题组前期研究发现,东北黑土植稻大于50年的水稻土中主要以2—0.25 mm团聚体为主[20]。土壤13C、15N自然丰度值可以从内在反映出土壤有机碳的来源和周转速率[21-24],植被的转变或者新碳的介入会对土壤有机碳、氮的周转产生影响,从而导致各级团聚体δ13C、δ15N发生改变[25-27]。由此可见,不同土壤、土地利用方式及种植年限对土壤团聚体的影响不尽相同,多数研究集中在我国亚热带地区。【本研究切入点】课题组在前期研究中已明确东北黑土旱地改稻田后土壤有机碳、全氮的变化特征[11],但关于东北黑土旱田改稻田后土壤各粒级团聚体有机碳、全氮的变化特征如何?还尚不清楚。【拟解决的关键问题】利用土壤团聚体湿筛分离技术和稳定同位素分析技术,研究东北黑土区旱地改稻田后土壤各粒级团聚体组成、团聚体中有机碳、全氮含量及其δ13C、δ15N的变化,阐明黑土区旱地改稻田后土壤团聚体有机碳、全氮的赋存能力及其稳定性,为揭示黑土区旱地改稻田后土壤团聚体有机碳、全氮的演变规律提供重要的理论依据。
1 材料与方法
1.1 供试土壤
供试土壤采自黑龙江省绥化市庆安县勤劳镇勤朴村,属于典型黑土,为黄土性沉积物发育的土壤。2015 年10月进行实地田间生产调研,确定连续种植大豆60年以上的旱地土壤(作为对照土壤)和旱地改稻田年限分别为3、5、10、17、20 和 25年的稻田土壤。供试土壤区域的气候和地形(漫岗丘陵区,坡度小于3°)大致相同,旱地改种水稻前种植作物均为大豆,改种水稻前土壤性状与对照土壤性状基本一致。旱地改种水稻后每年施用氮、磷、钾化肥量大致相同,但年限间化学肥料的品种、用量存在差异,供试土壤不施用有机肥料。
2015年10月水稻收获后进行供试田块土壤样本采集。将每个相同年限的田块作为一个采样区域,并划分为面积大约相同的3个采样单元作为3次采样重复,每个采样单元以“S”法布设5—7点,用土钻采集布设点样本后均匀混合作为一个重复样本,混合后土壤样本装在塑料箱中(避免破坏原土状态)。考虑黑土自身腐质层比较深厚,同时旱地改稻田年限相对较短,稻田土壤犁底层形成相对较弱,因此确定采样深度为0—20、20—40和40—60 cm。土样运回室内后,在室温下自然风干,在风干过程中用手轻轻地把土块沿自然结构面掰成直径约5 cm的小块,并除去肉眼可以识别的粗根和石块,风干后混合均匀,其中,一部分土样磨碎过0.15 mm筛备用,一部分土样过8 mm筛用于制备各粒级团聚体。供试土壤的地理信息及理化性质见表1。
1.2 各级团聚体的分离
土壤团聚体的分离依据SIX等[28]提供的土壤团聚体湿筛法,采用团粒分析仪(DIK-2012,日本)进行筛分。称取50 g自然风干土样,放在2 mm、0.25 mm和0.053 mm组成的套筛上,调整水面高度使水面刚好没过土样,浸泡5 min后,以速度为30 次/min振荡30 min,筛分结束后分别将套筛上的团聚体进行收集并转移至蒸发皿中,并于60 ℃烘干至恒重(约48 h)并称重,获得>2 mm、2—0.25 mm、0.25—0.053 mm和<0.053 mm团聚体。并将制备好各粒级团聚体样品磨碎过0.15 mm筛备用。
1.3 有机碳、全氮含量及其δ13C、δ15N自然丰度值测定
原土和各粒级团聚体样品中的有机碳、全氮含量及其δ13C、δ15N均采用元素分析仪—稳定同位素比例质谱仪(EA–IRMS,Elementanalysis-Stable100 Isotope Ratio Mass Spectrometer,德国)联用测定。
width=130.7,height=26 (1)
width=128.85,height=26 (2)
式中,RC、RN分别为样品13C/12C 原子比值和15N/14N原子比值;RPDB和RAN值为0.0112372(以美国南卡罗来纳洲白垩纪皮狄组层中的拟箭石化石(Pee Dee Belemnite, PDB)为标准物质)和0.0036765(以纯净大气氮(Air Nitrogen, AN)为标准物质)。
1.4 数据计算
(1)团聚体平均重量直径(MWD)
width=118.8,height=15.5 (3)
式中,width=9.85,height=13.1为第i级团聚体颗粒组的平均直径(mm),Maggregate为各级团聚体占土壤质量的百分比(%)[7]。
(2)某粒级团聚体有机碳、全氮含量
Caggregate(Naggregate)=Ccon-aggregate)Ncon-aggregate)×Maggregate (4)
式中,Caggregate(Naggregate)为某粒级团聚体有机碳(全氮)含量(g·kg-1 soil),Ccon-aggregate(Ncon-aggregate)为某粒组团聚体有机碳(全氮)测试浓度(g·kg-1 aggregate)。
1.5 数据处理
采用 Excel 2010 和SPSS 19.0 (SPSS Inc., Chicago, IL, USA)进行数据处理,采用 Origin9.0 软件对数据进行绘图。以年限和土层为因素进行双因素方差分析(two-ways ANOVA),采用Tukey法进行多重比较,若数据误差方差为非齐性,则使用非参数检验(non-parametric test),Kruskal-Wallis单因素方差分析(one-way ANOVA)。若两个因素存在显著的交互作用,则进行单因素方差分析(one-way ANOVA),采用Tukey法或Dunnett T3法进行多重比较,并以小写字母表示差异显著性(P<0.05)。数据均为3次重复的平均值。
表1 供试土壤的地理信息及理化性质
Table 1 The geographical information and physical-chemical properties of the soil samples
2 结果
2.1 旱地改稻田土壤水稳性团聚体组成及平均重量直径的变化
由图1可以看出,旱地改稻田3—25年间,在0—20 cm土层,>2 mm、2—0.25 mm、0.25—0.053 mm和<0.053 mm团聚体组成分别为8.96%—27.11%、27.68%—38.58%、22.29%—37.12%和14.65%—26.05%;在20—40 cm土层,>2 mm、2—0.25 mm、0.25—0.053 mm和<0.053 mm团聚体组成分别为2.87%— 24.37%、24.45%—34.40%、27.38%—38.12%和18.25% —32.32%;在40—60 cm土层,>2 mm、2—0.25 mm、0.25—0.053 mm和<0.053 mm团聚体组成分别为1.84%—7.54%、25.69%—34.41%、33.35%—38.91%和23.00%—33.42%。总体上,在0—60 cm土层,与种植大豆的旱地土壤相比,改种水稻各年限土壤中,2—0.25 mm团聚体组成有所减少,0.25—0.053 mm和<0.053mm团聚体组成有所增加,>2 mm团聚体组成的变化无明显规律。另外,水稻种植年限和土层深度之间的交互作用对各粒级团聚体组成均无显著影响,但水稻种植年限对2—0.25 mm、0.25— 0.053 mm和<0.053 mm团聚体组成影响显著,土层深度则对>2 mm、0.25—0.053 mm和<0.053 mm团聚体组成影响显著。由此可见,旱地改稻田,由于每年在水稻种植期间淹水,使土壤中非水稳性大团聚体遭受破坏,形成了粒径较小的团聚体,但均以2—0.25 mm和0.25—0.053 mm团聚体为主;水稻种植年限和土层深度是影响水稳性团聚体组成变化的重要因素。
width=369.6,height=232.95
数值为平均值±标准误。* ,**,***,ns分别表示为0.05,0.01,0.001水平显著和不显著。下同
Values are mean±standard error (n=3). With P<0.05(*), P<0.01(**), P<0.001(***), non significant (ns). The same as below
图1 旱地改稻田后不同年限土壤团聚体组成
Fig. 1 Soil aggregate size composition after conversion from upland to paddy field for different years
由图2所示,土层深度是显著影响土壤团聚体平均重量直径(MWD)变化的重要因素;总体上,MWD随土层深度的加深而减少,0—20 cm土层的MWD显著(P<0.01或P<0.05)大于20—40 cm和40—60 cm土层的MWD(P<0.05)。相关分析显示(表2),在3个土层中,MWD与>2 mm团聚体组成之间呈显著线性正相关关系(P<0.01),与0.25—0.053 mm、<0.053 mm团聚体组成之间均呈显著线性负相关关系(P<0.01或P<0.05)。这表明旱地改稻田后,>2 mm团聚体数量的增加提高了土壤水稳性团聚体的稳定性,而较小粒级团聚体(<0.25 mm)的增加则降低了土壤水稳性团聚体的稳定性。
width=209.4,height=141.75
***为0.001水平显著,ns为不显著
With P<0.001(***), non significant (ns)
图2 旱地改稻田不同年限土壤团聚体平均重量直径
Fig. 2 Mean weight diameter of soil aggregate after conversion from upland to paddy field for different years
2.2 旱地改稻田土壤水稳性团聚体有机碳(氮)含量的变化
由表3可以看出,总体上,2—0.25 mm、0.25— 0.053 mm团聚体是赋存有机碳和全氮的主要粒级。与对照土壤相比,在0—20 cm和20—40 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降;在改种水稻3—25年间均随水稻种植年限延长大体上呈增加趋势,且在改种水稻25年时,两个粒级团聚体有机碳和全氮含量与对照土壤的相接近。在40—60 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降;两个粒级团聚体有机碳含量在改种水稻3—17年间大体呈逐年增加趋势,而在改种水稻17—25年间则呈逐年降低趋势;2—0.25 mm团聚体全氮含量在改种水稻3—25年间大体呈逐年增加趋势,0.25—0.053 mm团聚体全氮含量在改种水稻3—17年间有所增加,在改种水稻17—25年间有所下降。>2 mm和<0.053 mm团聚体有机碳和全氮含量在改种水稻后无显明规律性。另外,水稻种植年限和土层深度之间的交互作用对各粒级团聚体有机碳和全氮含量均无显著影响,但水稻种植年限和土层深度对不同粒级团聚体有机碳和全氮含量有重要影响。总体上,水稻种植年限对2—0.25 mm、0.25—0.053 mm和<0.053 mm团聚体有机碳和全氮含量影响显著,土层深度对>2 mm和2—0.25 mm团聚体有机碳和全氮含量影响显著。
表2 各粒级团聚体组成与土壤团聚体平均重量直径的相关系数
Table 2 Correlation coefficient between the mean weight diameter and composition of soil aggregates size
*,**分别表示为0.05,0.01水平显著。下同
With P < 0.05(*),P < 0.01(**). The same as below
表3 旱地改稻田后不同年限土壤团聚体有机碳和全氮含量
Table 3 OC and TN contents in soil aggregate after conversion from upland to paddy field for different years
相关分析显示(表4),在3个土层,>2 mm团聚体有机碳、全氮含量与其团聚体组成之间均呈显著正相关关系(P<0.01或P<0.05)。0—20 cm土层,2—0.25 mm团聚体有机碳、全氮含量与其团聚体组成之间也呈显著正相关关系(P<0.01或P<0.05)。这说明旱地改种水稻田后,有机碳、全氮对于土壤水稳性大团聚体(>0.25 mm),尤其是表层水稳性大团聚体(>2 mm)形成具有重要作用,同时大团聚体的形成与稳定也有利于有机碳、全氮的赋存。
表4 各粒级团聚体有机碳、全氮含量与各粒级土壤团聚体的相关系数
Table 4 Correlation coefficients of OC and TN contents and composition of soil aggregate size
2.3 旱地改稻田土壤水稳性团聚体中δ13C、δ15N的变化
由表5可见,与对照土壤相比,各粒级团聚体中δ13C在改种水稻3年时均明显增加,在改种水稻3—5年间明显下降,在改种水稻5—25年间变化不明显;在改种水稻25年间,各粒级团聚体中δ15N值均略有下降。总体上,在改种水稻3—25年间,团聚体中δ13C、δ15N随粒级的减小呈增加趋势,相同年限各粒级团聚体δ13C随着土层的加深而增大,δ15N的变化无明显规律。水稻种植年限显著影响4个粒级团聚体中δ13C和δ15N,土层深度显著影响<2 mm粒级团聚体中δ13C和δ15N,二者的交互作用仅显著影响0.25—0.053 mm团聚体中δ13C和δ15N。这说明随着团聚体的粒级变小,土壤有机碳(氮)易分解性越小,相对越稳定;其稳定性随水稻种植年限延长、土层加深度而增强。
3 讨论
3.1 旱地改稻田对土壤团聚体组成及其稳定性的影响
土地利用方式和耕作管理(作物类型、施肥、排水和灌溉)是影响土壤结构和特性的最重要因素,并对土壤团聚体的形成和破裂产生影响[29]。Huang等[14]对东北旱地和稻田土壤的研究发现,土壤团聚体主要以2—0.25 mm、0.25—0.053 mm粒级为主,旱地改种稻田27年时稻田土壤中>0.25 mm团聚体显著高于旱地土壤。Zou等[9]研究表明,随着种稻年限的延长大团聚体随之增加,微团聚体随之减少。李昌新等[11]研究表明,长期玉米和水稻种植下,稻田土壤中>2 mm、<0.053 mm团聚体均显著高于旱地,而2—0.25 mm团聚体则相反。Zheng等[8] 和Pan等[15]研究表明,耕作会引起2—0.25 mm团聚体发生改变。本研究中,旱地改稻田3年时,2—0.25 mm团聚体下降,<0.25 mm团聚体组成上升;旱地改稻田3—25年间,2—0.25 mm团聚体有所上升,<0.25 mm团聚体有所下降;旱地改稻田25年时2—0.25 mm团聚体低于旱地土壤,<0.25 mm团聚体高于旱地土壤(图1),这说明黑土在旱地改稻田年限较短时,干湿交替过程[30]和淹水条件[31]会导致大团聚体破裂形成微团聚体,其中2—0.25 mm团聚体对于耕作环境的变化比较敏感,但随着水稻种植年限的延长,由于长期淹水会使微团聚体进一步团聚,进而促进大团聚体的形成[15]。
表5 旱地改稻田后不同年限土壤团聚体中的δ13C和δ15N
Table 5 δ13C and δ 15N of soil aggregate after conversion from upland to paddy field for different years
不同小写字母表示相同粒级团聚体,年限与土层之间存在显著交互作用达0.05显著水平
Indicate the significant (P<0.05) differences between years and soil depth by different lowercase letters
土壤团聚体平均重量直径(MWD)可以反映出不同粒级团聚体的分布状况和稳定性[1],MWD值越大,团聚体稳定性越好[32]。Wang等[19]研究表明,大团聚体在干湿交替过程中易于破裂为微团聚体,并导致团聚体水稳性显著下降。本研究中,MWD值与>2 mm团聚体组成呈显著正相关,与<0.25 mm团聚体组成呈显著负相关(表2);水稻种植年限对MWD影响不显著,而土层深度则对MWD影响显著,0—20 cm土层团聚体稳定性显著高于20—60 cm土层(图2)。这说明旱地改稻田后,由于干湿交替和淹水过程,影响了0—60 cm土层各粒级团聚体的变化,水稻种植年限为17年时,由于0—40 cm土层中>2 mm和2—0.25 mm大团聚体的增加,0.25—0.053 mm和<0.053 mm团聚体的减少(图1),使0—40 cm土层团聚体水稳性有所上升(图2)。
3.2 旱地改稻田对土壤团聚体有机碳、全氮含量及其稳定性的影响
土壤团聚体是土壤有机碳、全氮固定[33]和物质能量转化[17]的重要场所,不仅可以保护土壤有机质也可以延迟其矿化[34],由于各粒级团聚体对土壤有机碳、全氮的保护机制不同,因此对土壤有机碳、全氮的固持也存在差异[33]。大团聚体主要是通过根系、真菌菌丝等胶结而成。在大多数情况下,有机物先与其结合,碳浓度最高且周转率最快[2],而微团聚体受芳香族化合物束缚,碳周转速率较低[35]。李昌新等[10]对种植20多年的南方稻田和旱地土壤的研究表明,稻田和旱地土壤有机碳含量均主要分配在2—0.25 mm和0.25—0.053 mm团聚体中,与旱地土壤相比,稻田土壤降低了2—0.25 mm团聚体有机碳的比例,但提高了其他粒级团聚体有机碳的比例。HUANG等[14]研究表明,旱地转变为稻田27年后显著提高了2—0.25 mm、0.25—0.053 mm团聚体有机碳含量,但其他粒级团聚体有机碳含量则无显著变化。徐文静等[20]对东北黑土区种稻大于50年的水稻土研究表明,2—0.25 mm团聚体是赋存有机碳的主要载体,具有明显的固碳能力。许多研究表明,稻田土壤中有机碳含量的变化与大团聚体紧密相关[10,15,36],各粒级团聚体有机碳含量随种稻年限的延长而增加[9],但也有研究表明,稻田土壤有机碳可向微团聚体和粉黏粒中转移以利于有机碳的长期赋存[11,14,18]。本研究中,旱地改种稻田后各粒级团聚体中有机碳、全氮含量的变化大致相同,土壤有机碳、全氮含量与土壤团聚体组成之间紧密相关(表4),在改种水稻年限较短时(3年间),各粒级团聚体中有机碳、全氮含量下降(表3),这主要是由于土地利用方式的改变使土壤中各粒级团聚体遭受不同程度破坏(图1),进而加速了有机碳(氮)分解和周转速率[37];在改稻田3—25年间,2—0.25 mm、0.25—0.05 mm团聚体有机碳、全氮含量则有所增加(图3),这主要是由于随着改种年限延长,淹水条件可延缓土壤有机质的分解速率,降低土壤有机碳、氮的矿化速率[38],同时由于大团聚体破裂为微团聚体,使其微团聚体易与有机质粘结[39]。由此可见,东北黑土旱地改稻田25间,2—0.25 mm、0.25—0.053 mm团聚体是土壤有机碳、全氮赋存的主要粒级,对有机碳(氮)的物理保护发挥重要作用。
采用δ13C可以研究土壤有机碳的动态变化,土壤的δ13C随时间的变化主要受植被输入的有机碳控制,植物残体进入土壤后在微生物作用下可发生矿化分解过程和腐殖化过程,致使土壤的δ13C会与植物本身的δ13C有所不同[24];其次由生物衰变过程控制[22],土壤有机碳分解过程中微生物对12C的优先分解会引起土壤δ13C增高,δ13C越大,其有机碳的降解程度越低[25]。大豆和水稻均属于C3作物,其δ13C介于-29.1‰—-24.2‰[21],水稻的平均δ13C为-26.34‰[4]。本研究中,长期连续种植大豆的旱地,在改种水稻年限较短时(3年),由于土地利用方式及植被类型的改变,新鲜有机质会不同程度进入到不同粒级团聚体中,但又由于水稻单产显著高于大豆单产,对土壤养分的需求大幅度增加,同时大团聚体遭受破坏,加速土壤中易分解有机碳的分解使碳同位素分馏效应增加,因此,致使旱地改稻田3年间各粒级团聚体中δ13C均有所增加(表5),这与课题组前期关于旱地改稻田土壤δ13C的变化结果相一致[5];在旱地改稻田5—25年,由于大量水稻根系和地上残体归还土壤使有机碳得到补充和更新,又由于稻田土壤环境逐渐趋于稳定可使有机碳分解缓慢,进而使各级团聚体中δ13C均有所降低,但随种稻年限延长变化较为平缓(表5)。LIU等[27]研究发现,新鲜有机碳的赋存一般从大团聚体(>0.25 mm)开始,经过分解过程和微生物消耗后,降解的有机碳则被螯合在微团聚体(<0.25 mm)中,植物残留物的腐殖化作用会伴随着13C的轻微富集。本研究中,团聚体的粒径越小,其δ13C越大(表5),这也说明团聚体粒径越大,赋存新鲜有机碳越多,这一结果与LIU等[27]研究结果相类似。另外,相同年限各粒级团聚体中δ13C随土层加深而增大(表5),这进一步说明,外源新鲜有机碳不能及时地进入补充到深层土壤,同时深层土壤有机碳相对较“老”[23,27],矿化分解速度较慢。
土壤中δ15N的变异可反映出土壤氮素的转化和迁移特征,其中矿化和硝化过程是导致氮同位素分馏从而影响δ15N的主要原因[40]。研究表明,土壤中δ15N在很大程度受土壤水分的影响[40-41],非淹水条件下土壤中硝化作用较快,而在淹水条件下有利于反硝化作用,矿化作用相对较弱,微生物对氮的固定作用较快。本研究中,旱地改稻田后,由于稻田土壤多处于淹水或含水量较高的状态,土壤硝化作用受到抑制,大量15N贫化的水稻植株根系或残体进入土壤[26,35],致使稻田土壤各粒级团聚体的δ15N低于旱地土壤(表5)。
4 结论
东北黑土旱地改种稻田25年间,稻田土壤中2—0.25 mm团聚体有所减少,0.25—0.053 mm和<0.053 mm团聚体有所增加,>2 mm团聚体则无明显变化规律,但均以2—0.053 mm团聚体为主;各粒级团聚体有机碳、全氮含量随改种年限延长呈大致相同的变化趋势,总体上,2—0.053 mm团聚体是赋存有机碳和全氮的主要粒级;团聚体中δ13C、δ15N均随粒级的减小呈增加趋势,相同年限各粒级团聚体δ13C随着土层的加深而增大,δ15N无明显变化规律。因此,东北典型黑土旱地改稻田后,土壤中非水稳性大团聚体遭受破坏形成了粒径较小的团聚体,2—0.053 mm水稳性团聚体是有机碳、全氮固存的主要载体,较小粒级团聚体赋存的有机碳较为稳定,其稳定性随水稻种植年限延长、土层加深而增大。
References
[1] WANG Y, ZHANG J H, ZHANG Z H. Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope. Soil and Tillage Research, 2015, 151: 82-92.
[2] HUANG R, LAN M L, LIU J, GAO M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environmental Science & Pollution Research, 2017, 24(36): 1-11.
[3] SIX J, BOSSUYT H, DEGRYZE S, DENEF K. A history of research on the link between (Micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79(1): 7-31.
[4] LIU Y, HU C, HU W, WANG L, LI Z G, PAN J F, CHEN F. Stable isotope fractionation provides information on carbon dynamics in soil aggregates subjected to different long-term fertilization practices. Soil and Tillage Research, 2018, 177: 54-60.
[5] 贾树海, 张佳楠, 张玉玲. 东北黑土区旱田改稻田后土壤有机碳、全氮的变化特征, 中国农业科学, 2017, 50(7): 1252-1262.
JIA S H, ZHANG J N, ZHANG Y L. Changes of the characteristics of soil organic carbon and total nitrogen after conversation from upland to paddy field in black soil region of Northeast China. Scientia Agricultura Sinica, 2017, 50(7): 1252-1262. (in Chinese)
[6] ZHAO J S, CHEN S, HU R G, LI Y Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 2017, 167: 73-79.
[7] 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529.
XU X R, WANG J K. A review on different stabilized mechanisms of soil aggregates and organic carbon. ChineseJournal of Soil Science, 2017, 48(6): 1523- 1529. (in Chinese)
[8] ZHENG H B, LIU W R, ZHENG J Y, LUO Y, LI R P, WANG H, QI H. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China, PLoS One, 2018, 13(6): e199523.
[9] ZOU P, FU J R, CAO Z H, YE J, YU Q G. Aggregate dynamics and associated soil organic matter in topsoils of two 2,000-year paddy soil chronosequences. Journal of Soils & Sediments, 2015, 15(3): 510-522.
[10] WANG P, LIU Y L, LI L Q, CHENG K, ZHENG J F, ZHANG X H, ZHENG J W, JOSEPH S, PAN G X. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Scientific Reports, 2015, 5: 15704.
[11] 李昌新, 黄山, 彭现宪, 黄欠如, 张卫建. 南方红壤稻田与旱地土壤有机碳及其组分的特征差异. 农业环境科学学报, 2009, 28(3): 606-611.
LI C X, HUANG S, PENG X X, HUANG Q R, ZHANG W J. Differences in soil organic carbon fractions between paddy field and upland field in red soil region of South China. Agro-Environment Science, 2009, 28(3): 606-611. (in Chinese)
[12] YAN X, ZHOU H, ZHU Q H, WANG X F, ZHANG Y Z, YU X C, PENG X. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in Southern China. Soil and Tillage Research, 2013, 130: 42-51.
[13] SUN Y N, HUANG S, YU X C, ZHANG W J. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in Subtropical China. Plant and Soil, 2015, 397(1): 189-200.
[14] HUANG S, PAN X H, GUO J, QIAN C R, ZHANG W J. Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China. Journal of Soils and Sediments, 2014, 14(1): 89-98.
[15] PAN G X, WU L S, LI L Q, ZHANG X H, GONG W, WOOD Y. Organic carbon stratification and size distribution of three typical paddy soils from Taihu lake region, China. Environmental Sciences, 2008, 20(4): 456-463.
[16] 毛霞丽, 陆扣萍, 何丽芝, 宋照亮, 徐祖祥, 杨文叶, 徐进, 王海龙. 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响. 土壤学报, 2015(4): 828-838.
MAO X L, LU K P, HE L Z, SONG Z L, XU Z X, YANG W Y, XU J, WANG H L. Effect of long-term fertilizer application on distribution of aggregate-associated organic carbon in paddy doil. Acta Pedologica Sinica, 2015(4): 828-838. (in Chinese)
[17] 陈晓芬, 李忠佩, 刘明, 江春玉. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960.
CHEN X F, LI Z P, LIU M, JIANG C Y. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of Subtropical China. Scientia Agricultura Sinica, 2013, 46(5): 950-960. (in Chinese)
[18] 王欣欣, 符建荣, 邹平, 陈维, 叶静, 俞巧钢, 姜丽娜, 王强. 长期植稻年限序列水稻土团聚体有机碳分布特征. 应用生态学报, 2013, 24(3): 719-724.
WANG X X, FU J R, ZOU P, CHEN W, YE J, YU Q G, JIANG L N, WANG Q. Distribution characteristics of aggregates organic carbon in a paddy soil chronosequence.Chinese Journal of Applied Ecology, 2013, 24(3): 719-724. (in Chinese)
[19] WANG H, GUAN D S, ZHANG R D, CHEN Y J, HU Y T, XIAO L. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering, 2014, 70: 206-211.
[20] 徐文静, 丛耀辉, 张玉玲, 段鹏鹏, 范庆锋, 张玉龙. 黑土区水稻土水稳性团聚体有机碳及其颗粒有机碳的分布特征. 水土保持学报, 2016, 30(4): 210-215.
XU W J, CONG Y H, ZHANG Y L, DUAN P P, FAN Q F, ZHANG Y L. Distribution of organic carbon and partivulate organic carbon in water-stable aggregates of paddy soil in black soil area. Journal of Soil and WaterConversion, 2016, 30(4): 210-215. (in Chinese)
[21] 窦森, 张晋京. 用δ13C值研究土壤有机质周转的方法及其评价. 吉林农业大学学报, 2001, 23(2): 64-67.
DOU S, ZHANG J J. Introduction of a method for studying turnover of soil organic matter. Journal of Jilin Agricultural University, 2001, 23(2): 64-67. (in Chinese)
[22] BAI E, BOUTTON T W, LIU F, WU X B, HALLMARK C T, ARCHER S R. Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biology & Biochemistry, 2012, 44(1): 102-112.
[23] PERI P L, LADD B, PEPPER D A, BONSER S P, LAFFAN S W, AMELUNG W. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia's Native Forests. Global Change Biology, 2012, 18(1): 311-321.
[24] KULSAWAT W, PORNTEPKASEMSAN B, NOCHIT P. Paddy soil profile dstribution of δ13C subjected to rice straw amendment and burning.Applied Mechanics and Materials, 2019, 886: 3-7.
[25] GUNINA A, KUZYAKOV Y. Pathways of Litter C by Formation of aggregates and SOM density fractions: implications from 13C natural abundance. Soil Biology and Biochemistry, 2014, 71: 95-104.
[26] LIM S S, KWAK J H, LEE K S, CHANG S X, YOON K S, KIM H Y, CHOI W J. Soil and plant nitrogen pools in paddy and upland ecosystems have contrasting δ15N. Biology and Fertility of Soils, 2015, 51(2): 231-239.
[27] LIU Y, LIU W Z, WU L H, LIU C, WANG L, CHEN F, LI Z G. Soil aggregate-associated organic carbon dynamics subjected to different types of land use: evidence from 13C natural abundance. Ecological Engineering, 2018, 122: 295-302.
[28] SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377.
[29] ZHAO J S, CHEN S, HU R G, LI Y L. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 2017, 167: 73-79.
[30] VAN VEEN A J, KUIKMAN P J. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 1990, 11(3): 213-223.
[31] JIANG X J, XIE D T. Combining ridge with no-tillage in lowland rice-based cropping system: long-term effect on soil and rice yield. Pedosphere, 2009, 19(4): 515-522.
[32] 郝翔翔, 杨春葆, 苑亚茹. 连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响. 中国农学通报, 2013, 29(35): 263-269.
HAO X X, YANG C B, YUAN Y R. Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil. Chinese Agricultural Science Bulletin, 2013, 29(35): 263-269. (in Chinese)
[33] 徐虎, 张敬业, 蔡岸冬, 王小利, 张文菊. 外源有机物料碳氮在红壤团聚体中的残留特征. 中国农业科学, 2015, 48(23): 4660-4668.
Xu H, ZHANG J Y, CAI A D,WANG X L, ZHANG W J. Retention characteristic of carbon and nitrogen from amendments in different size aggregates of red soil. Scientia Agricultura Sinica, 2015, 48(23): 4660-4668. (in Chinese)
[34] RABBI S M F, WILSON B R, LOCKWOOD P V, DANIEL H, YOUNG I M. Aggregate hierarchy and carbon mineralization in two oxisols of new south wales, Australia. Soil and Tillage Research, 2015, 146: 193-203.
[35] 高崇升, 王建国. 黑土农田土壤有机碳演变研究进展. 中国生态农业学报, 2011, 19(6): 1468-1474.
Gao C S, Wang J G. A review of researches on evolution of soil organic carbon in mollisols farmland. Chinese Journal of Eco- Agriculture, 2011, 19(6): 1468-1474. (in Chinese)
[36] CHEN Z D, TI J S, CHEN F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutrient Cycling in Agroecosystems, 2017, 109(9): 1-12.
[37] WANG B S, GAO L L, YU W S, WEI X Q, LI J, LI S P, SONG X J, LIANG G P, CAI D X, WU X P. Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. Journal of Arid Land, 2019, 11(2): 241-254.
[38] KÖGEL-KNABNER I, AMELUNG W, CAO Z H, FIEDLER S, FRENZEL P, JAHN R, KALBITZ K, KÖIBI A, SCHLOTER M. Biogeochemistry of paddy soils. Geoderma, 2010, 157(1): 1-14.
[39] QIAN J, LIU J J, WANG P F, WANG C, HU J, LI K, LU B, TIAN X, GUAN W Y. Effects of riparian land use changes on soil aggregates and organic carbon. Ecological Engineering, 2018, 112: 82-88.
[40] 慈恩, 杨林章, 倪九派, 高明, 谢德体. 不同区域水稻土的氮素分配及δ15N特征. 水土保持学报, 2009, 23(2): 103-108.
CI E, YANG L Z, NI J P, GAO M, XIE D T. Distribution and δ15N character of nitrogen in paddy soils located in different regions.Journal of Soil and Water Conservation, 2009, 23(2): 103-108. (in Chinese)
[41] CHOI W J, RO H M. Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biology and Biochemistry, 2003, 35(3): 483-486.
Change Characteristics of Organic Carbon and Total Nitrogen in Water-stable Aggregate After Conversion from Upland to Paddy Field in Black Soil
MA Yuan, CHI MeiJing, ZHANG YuLing, FAN QingFeng, YU Na, ZOU HongTao
(College of Land and Environment, Shenyang Agricultural University/Key Laboratory of Northeast Arable Land Conservation, Ministry of Agriculture and Rural Affairs, Shenyang 110866)
Abstract: 【Objective】 The objectives of this study wereto analyze the composition and stability of soil aggregate, the changes of organic carbon (OC), total nitrogen (TN) content,natural abundance of 13C and 15N in different-sized aggregates, to explore the sequestration and stability of soil aggregate organic C, TN, and to reveal the evolution of soil aggregate organic C, TN changes after the conversion from upland to paddy field in black soil region of Northeast China.【Method】 Soil samples were collected from upland (soybean planted for over 60 years) in typical black soil and paddy soil with different years (3, 5, 10, 17, 20 and 25 years, soybean was planted in all the fields before conversion to paddy field). The dynamic characteristics of OC and TN in soil aggregates were studied by using wet-sieving method and stable isotope analysis technology.【Result】In the 0-60 cm soil layers, compared with the control treatment, the composition of 2-0.25 mm aggregates in the soil of different years after rice planting was decreased, which of 0.25-0.053 mm and <0.053 mm aggregates was increased. There was no obvious change in the composition of >2 mm aggregates, but the different years of dry land change to paddy fields were dominated by 2-0.053 mm aggregates; the mean weight diameter (MWD) of aggregates was significantly positive correlated with the proportion of >2 mm aggregates (P<0.01), and significantly negative correlated with the proportion of 0.25-0.053 mm and <0.053 mm aggregates (P<0.01 or P<0.05). The change of aggregate composition was significantly affected by different rice planting years and soil depth, whereas the MWD was significantly affected by soil depth. Compared with the control soil, in the 0-40 cm soil layer, the OC and TN contents in the size of 2-0.25 mm and 0.25-0.053 mm aggregates were declined in the 3 years, however there showed increased trend with the extension of rice cultivation in 3-25 years. Generally, OC and TN were mainly accumulated in the 2-0.25 mm and 0.25-0.053 mm aggregates. There existed significant positive correlation between OC and TN contents and aggregate composition in > 2 mm aggregates (P<0.01 or P<0.05) in the 0-60 cm soil layers, as well as 2-0.25 mm aggregates in the 0-20cm soil layer (P<0.01 or P<0.05). The OC and TN contents variation in <2 mm aggregates were significantly affected by rice cultivation time, while soil depth significantly affected >0.25 mm aggregates OC and TN contents. Compared with the control soil, the δ13C in each size of aggregates significantly increased in 3 rice planting years and decreased in 5 rice planting years, respectively, while there was no significant change in the 5-25 rice planting years, and the δ15N in all size of aggregates decreased slightly during the 25 years of rice replanting. In general, the δ13C and δ15N of soil in aggregates were significantly affected by rice cultivation time and soil depth, which increased with the decreasing of aggregate size. The δ13C increased with soil depth in the same year, while δ15N had no significant change.【Conclusion】After the conversion from dry land to paddy field for 25 years, non-water-stable macro-aggregates in the soil were damaged and formed into small sized aggregates. The 2-0.053 mm water-stable aggregates were the main carrier of OC and TN sequestration, while OC in small size aggregates more stable, and its stability was increased by the rice cultivation time and soil depth increased.
Key words:black soil; upland; paddy field; water-stable aggregate; organic carbon; total nitrogen; 13C and 15N natural abundance
收稿日期:2019-07-12;
接受日期:2019-11-06
基金项目:国家自然科学基金面上项目(41571280)、国家自然科学基金青年基金项目(41101276)
联系方式:马原,E-mail:mayuan275@163.com。通信作者张玉玲,E-mail:zhangyuling@syau.edu.cn
开放科学(资源服务)标识码(OSID):width=42.5,height=42.5
(责任编辑 李云霞)
|
|