奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 280|回复: 0

小麦远缘杂交现状、抗病基因转移及利用研究进展

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60167
发表于 2021-10-16 09:00:02 | 显示全部楼层 |阅读模式
扫码加微信
小麦远缘杂交现状、抗病基因转移及利用研究进展
刘成,韩冉,汪晓璐,宫文萍,程敦公,曹新有,刘爱峰,李豪圣,刘建军

(山东省农业科学院作物研究所/农业部黄淮北部小麦生物学与遗传育种重点实验室/小麦玉米国家工程实验室,济南 250100)

摘要:小麦近缘植物中含有丰富的抗病、抗逆和抗虫等基因,是小麦育种的优异基因源。通过远缘杂交可以将近缘植物优异基因转移给小麦,创制包括双二倍体或部分双二倍体、附加系、代换系和易位系等在内的小麦-近缘植物异染色体系。这些含小麦近缘植物血缘的异染色体系是研究物种染色体行为与进化、基因定位与作图的重要素材,也是拓宽小麦的遗传基础、抵御小麦重要病虫害、增加小麦产量和提升小麦品质的重要物质基础。为了更加清晰地了解小麦远缘杂交概况及小麦近缘植物抗病基因向小麦的转移,也为今后小麦远缘杂交研究和种质资源的开发利用提供参考,文中对小麦族物种分类、小麦远缘杂交的定义与意义、小麦族山羊草属、黑麦属、偃麦草属、簇毛麦属、冰草属、大麦属、披碱草属、赖草属、新麦草属以及旱麦草属物种与小麦远缘杂交现状和异染色体系创制情况进行了概括,并对来源于小麦近缘植物被正式命名的17个抗条锈病基因、35个抗叶锈病基因、30个抗秆锈病基因、41个抗白粉病基因、3个抗赤霉病基因、1个抗麦瘟病基因、1个抗叶枯病基因、1个抗颖枯病基因、4个抗褐斑病基因、2个抗眼斑病基因、1个抗梭条花叶病基因、2个抗线条花叶病基因和2个抗禾谷类黄矮病基因向小麦的转移情况及其所在染色体的位置信息进行了归纳。小麦-黑麦1RS·1BL易位系、1RS·1AL易位系和小麦-偏凸山羊草2NS/2AS易位系等抗病优良种质的育成与利用在世界小麦育种史上做出了突出贡献,然而,这仅仅得益于对少数抗病基因的利用。与目前已经被命名的基因数量相比,被利用到小麦育种中的抗病基因相对较少。文中分析了当前已命名抗病基因利用情况比例偏低的原因,并对今后如何利用这些抗病基因提出了建议。同时,还列举了已克隆的源自小麦近缘植物的抗病基因,并对克隆这些基因的方法以及今后可能的研究热点进行了分析,认为加强无遗传累赘的小麦-近缘植物易位系的创制与应用仍可能是今后小麦育种材料创新与新品种培育的一个重要发力点。

关键词:小麦;远缘杂交;异染色体系;抗病基因;衍生品种

1 小麦族分类
小麦族(Triticeae)有300多个物种,包含小麦属(Triticum)、山羊草属(Aegilops)、黑麦属(Secale)、偃麦草属(Elyrigia)、簇毛麦属(Dasypyrum)、冰草属(Agropyrum)、大麦属(Hordeum)、披碱草属(Elymus)、赖草属(Leymus)、新麦草属(Psathyrostachys)、旱麦草属(Eremopyrum)、类大麦属(Crithopsis)、无芒草属(Henrardia)、异形花属(Heteranthelium)、棱轴草属(Taeniatherum)、鹅观草属(Roegneria)、拟鹅观草属(Pseudoroegneria)和澳麦草属(Australopyrum)等,基本染色体组包含A—W和2个尚未确定的染色体组X和Y,表现出遗传变异的多样性[1-2]。小麦的近缘植物具有抗病[3-5]、抗虫[4-5]、抗旱[6]、抗寒[7-8]、耐盐[6,9-10]等优良性状,是小麦遗传改良的宝贵基因资源库[1-3]。

2 小麦远缘杂交现状
远缘杂交是亲缘关系较远的(包括生物学规定的不同“种”间、“属”间)以及亲缘关系更远的物种间杂交的统称[11-12]。小麦族中,小麦与黑麦、小麦与偃麦草、小麦与山羊草以及不同小麦种间的杂交均属远缘杂交,而生物学上规定的“种”以内的不同变种或品种间的杂交则统称为近缘杂交[11]。将近缘植物与小麦杂交,不仅可以将其优异基因导入小麦进行遗传改良[12-15],还可以用于基因及染色体作图[16-17]、染色体行为及进化[18-19]等研究。自18世纪,科学家们就零星开始了小麦远缘研究[20]。19世纪以来,国内外科学家们在小麦远缘杂交方面做了大量工作,不同小麦种间[21-22]、小麦与山羊草属[2,23-26]、黑麦属[2,20,26-29]、偃麦草属[2,11,26,30-32]、簇毛麦属[2,26,33-36]、冰草属[26,37-39]、大麦属[40-42]、披碱草属[43-45]、赖草属[26,46-48]、新麦草属[49-51]、旱麦草属[52-53]等属物种远缘杂交成功的结果陆续被报道出来。目前,除类大麦属、拟鹅观草属、无芒草属、异形花属、棱轴草属、澳麦草属物种外,其余小麦族各属物种均已有与小麦杂交成功的报道。

3 小麦-近缘植物异染色体系创制情况
包括小麦-近缘植物双二倍体或部分双二倍体、附加系、代换系和易位系等在内的异染色体系,是向小麦转移近缘植物优异基因的桥梁和物质基础[5,54-55]。目前,小麦种间[21-22]、小麦与山羊草属[2,55-57]、黑麦属[2,58-60]、偃麦草属[2,26,31,61-63]、簇毛麦属[2,33-35,64]、冰草属[2,65-67]、大麦属[68-70]、披碱草属[71-73]、赖草属[2,74-76]、新麦草属[2,77-80]等属物种异染色体系创制成功的结果如雨后春笋般被报道。目前,虽然已有大量的小麦-近缘植物异染色体系被创制出来,然而,被直接用于小麦育种的小麦-近缘植物染色体易位系的比例还比较低。

4 近缘植物抗病基因向栽培小麦转移情况
迄今为止,小麦与近缘植物杂交成功的报道已有数百个[5,11,19,26,31,81],其中大部分与小麦五大主要病害抗病基因转移有关[5,82]。目前,被国际小麦新基因命名委员会正式命名的抗小麦条锈病、叶锈病、秆锈病、白粉病和赤霉病的基因个数分别为82、79、60、65和7个,其中,来源于小麦近缘植物的基因个数分别有17(表1)、35(表2)、30(表3)、41(表4)和3个(表5),分别占被正式命名基因的20.7%、44.3%、50.0%、63.1%和42.9%。

此外,被正式命名的抗麦瘟病、叶枯病、颖枯病、褐斑病、眼斑病、梭条花叶病、线条花叶病和禾谷类黄矮病基因分别为8、18、3、7、3、1、3和3个,其中,来源于小麦近缘植物的基因个数分别有1、1、1、4、2、1、2和2个(表6),分别占被正式命名基因的12.5%、5.5%、33.3%、57.1%、66.7%、100%、66.7%和66.7%。

4.1 抗条锈病基因向小麦转移情况
来源于小麦近缘植物的抗条锈病基因有17个(表1),包括来自顶芒山羊草的Yr8、偏凸山羊草的Yr17、拟斯卑尔脱山羊草的Yr19、粗山羊草的Yr28、粘果山羊草的Yr37、沙融山羊草的Yr38、卵穗山羊草的Yr40、三芒山羊草的Yr42、小伞山羊草的Yr70、栽培黑麦的Yr9、中间偃麦草的Yr50、硬粒小麦的Yr7、Yr24和Yr53以及野生二粒小麦的Yr15、Yr35和Yr36。

表1 小麦近缘植物抗条锈病基因向小麦转移情况

Table 1 Stripe rust resistance genes transferred from wild relatives to wheat


4.2 抗叶锈病基因向小麦转移情况
来源于小麦近缘植物的抗叶锈病基因有35个(表2),包括来自小伞山羊草的Lr9和Lr76、粗山羊草的Lr21、Lr22a、Lr22b、Lr32、Lr39和Lr42、拟斯卑尔脱山羊草的Lr28、Lr35、Lr36、Lr47、Lr51和Lr66、偏凸山羊草的Lr37、粘果山羊草的Lr54、沙融山羊草的Lr56、卵穗山羊草的Lr57、钩刺山羊草的Lr58、柱穗山羊草的Lr59、短穗山羊草的Lr62、栽培黑麦的Lr25、Lr26和Lr45、长穗偃麦草的Lr19和Lr29、彭提卡偃麦草的Lr24、中间偃麦草的Lr38、粗穗披碱草的Lr55、栽培二粒小麦的Lr14a、野生二粒小麦的Lr53和Lr64、硬粒小麦的Lr23、一粒小麦的Lr63和提莫非维小麦的Lr50。

4.3 抗秆锈病基因向小麦转移情况
来源于小麦近缘植物的抗秆锈病基因有30个(表3),包括来自顶芒山羊草的Sr34、偏凸山羊草的Sr38、拟斯卑尔脱山羊草的Sr32、Sr39和Sr47、希尔斯山羊草的Sr51、卵穗山羊草的Sr53、栽培黑麦的Sr27、Sr31、Sr50和Sr59、簇毛麦的Sr52、彭提卡偃麦草Sr24和Sr25、长穗偃麦草的Sr26和Sr43、中间偃麦草的Sr44、野生二粒小麦的Sr2、Sr9d、Sr9e、Sr13、Sr14和Sr17、一粒小麦的Sr21、Sr22、Sr35和Sr60、硬粒小麦的Sr12以及提莫非维小麦的Sr36和Sr37。

表2 小麦近缘植物抗叶锈病基因向小麦转移情况

Table 2 Leaf rust resistance genes transferred from wild relatives to wheat


表3 小麦近缘植物抗杆锈病基因向小麦转移情况

Table 3 Stem rust resistance genes transferred from wild relatives to wheat


4.4 抗白粉病基因向小麦转移情况
来源于小麦近缘植物的抗白粉病基因有41个(表4),包括来自拟斯卑尔脱山羊草的Pm12、Pm32和Pm53、粗山羊草的Pm19、Pm34、Pm35和Pm58、高大山羊草的Pm13、希尔斯山羊草的Pm57、卵穗山羊草的Pm29、栽培黑麦的Pm7、Pm8、Pm17、Pm20和Pm56、簇毛麦的Pm21、Pm55和Pm62、中间偃麦草的Pm40和Pm43、彭提卡偃麦草的Pm51、一粒小麦的Pm1b和Pm4d、野生一粒小麦的Pm25、波斯小麦的Pm4b、栽培二粒小麦的Pm4a、Pm5a、Pm49和Pm50、野生二粒小麦的Pm16、Pm26、Pm30、Pm36、Pm41、Pm42和Pm64、硬粒小麦的Pm3h、乌拉尔图小麦的Pm60以及提莫非维小麦的Pm6、Pm27和Pm37。

表4 小麦近缘植物抗白粉病基因向小麦转移情况

Table 4 Powdery mildew resistance genes transferred from wild relatives to wheat


4.5 抗赤霉病基因向小麦转移情况
来源于小麦近缘植物的抗赤霉病基因有3个(表5),包括来自大赖草的Fhb3、柯孟披碱草(也有科学家称其为鹅观草)的Fhb6和来自彭提卡偃麦草的Fhb7。

4.6 其他抗病基因向小麦转移情况
来源于小麦近缘植物的五大主要病害之外的抗病基因有14个(表6),包括来自栽培二粒小麦的抗麦瘟病基因Rmg7、粗山羊草的抗叶枯病基因Stb5、抗颖枯病基因Snb3和抗褐斑病基因Tsr3、野生二粒小麦的抗褐斑病基因Tsr2和Tsr7、圆锥小麦的抗褐斑病基因Tsr5、偏凸山羊草的抗眼斑病基因Pch1、簇毛麦的抗眼斑病基因Pch3和抗梭条花叶病毒基因Wss1、中间偃麦草的抗线条花叶病基因Wsm1、Wsm3以及抗禾谷类黄矮病基因Bdv2和Bdv3。

表5 小麦近缘植物抗赤霉病基因向小麦转移情况

Table 5 Fusarium head blight resistance genes transferred from wild relatives to wheat


表6 小麦近缘植物抗麦瘟病等基因向小麦转移情况

Table 6 Wheat blast resistance gene and other disease resistance genes transferred from wild relatives to wheat


—表示基因已命名但无文献发表(McIntosh R A与Worland A K,私人通讯)

—indicates that the gene has been designated but no reference published (MCINTOSH R A and WORLAND A K, private communication)

5 小麦近缘植物抗病基因的利用
在小麦远缘杂交种质应用方面,对世界小麦育种做出突出贡献的当属小麦-黑麦1RS·1BL易位系。1RS染色体上由于含Yr9、Pm8、Lr26和Sr31等基因,受到了广大育种工作者的普遍青睐[14,203-206],国外育种家们利用该易位系及其衍生系作亲本,育成了山前麦、高加索、无芒一号和洛夫林13等高产抗病小麦,被全世界几十个国家作为骨干亲本应用,育成了一大批优异小麦新品种[207-210],在推动小麦品种的更新换代中发挥了重要作用[203,211-212]。除了1RS·1BL易位系,国外育种家们还培育出了含1RS·1AL易位系的Amigo等品种,并以此为骨干亲本,培育出了含该易位系的Zhytnytsa、Nota和Duma[203]、Columbia、Etude和Rastavitsa[213]、TAM107、TAM303、TAM305、AG Robust、Fannin、N96L9970[214-216]和Helami-105等小麦新品种/系[217],在美国、墨西哥和欧洲等国家推广应用。近年来,国际玉米小麦改良中心(CYMMYT)以该易位系为亲本育成了CM409和CM451等一批小麦新品种/系(刘彩云,私人通讯)。

据报道,19世纪后期中国约70%小麦品种含1RS·1BL易位系[204-205],其中,为中国小麦育种做出突出贡献的矮孟牛(Ⅱ型、Ⅳ—Ⅶ型)、周麦22、周8425B和石4185等骨干亲本材料均含有1RS染色体。近年来,由于新的致病生理小种的产生与流行,使得Yr9和Pm8等基因的抗性迅速丧失[177,218-219],加上育种家们在育种过程中注意杂交亲本的遗传多样性,因此,该易位系在中国小麦中的比例明显下降[220]。虽然Yr9等基因的抗性已经丧失[177,218-219],但近期的研究发现,不同黑麦来源的1RS·1BL易位系可能含有不同的抗病等位基因[14,221],即表明不同黑麦来源的该易位系仍能在小麦育种中发挥重要作用。尤其是近年来,不含黑麦碱但仍具有良好抗病性的1RS·1BL易位系的创制[222-224],为小麦育种提供了新的育种资源。

除含1RS染色质的育种材料外,含Yr17、Lr37和Sr38的小麦-偏凸山羊草2NS/2AS易位系对世界小麦育种也做出了突出贡献。以该易位系为抗源育成的Mace(还含Lr14a和Wsm1)[225-226]、Jagger、Madsen、Overley、SY Gold、Trident、EGA Eaglehawk和Espada等小麦品种在美国、澳大利亚和欧洲等国家推广应用[225-229]。研究发现,源自中国10余个省份69个小麦品种中的49%含该易位系[230]。此外,据报道,川育18、川麦25和川麦39等[231]、新麦19、济麦20、济麦21和师栾02-1[232]、兰考906、西农739、陕872和小偃216等品种/系[233]含有该易位系。近期研究发现,济麦20和济麦21中不含但中麦175中含有Lr37等基因,然而Lr37已对中国当前叶锈生理小种表现为感病[234]。此外,Yr17在澳大利亚、欧洲和中国的条锈抗性已经完全或部分丧失[228,235-236]。因此,今后在育种中应减少对该易位系的利用。

自19世纪以来,中国在小麦远缘杂交领域研究一直处在世界前列。中国科学家先后将偃麦草[31,61-63,81,237-244]、黑麦[58-60,245-252]、簇毛麦[35,253]和冰草[254-255]等种质转移给了小麦,育成了一大批远缘杂交新材料。在对这些小麦远缘杂交种质利用方面,取得了举世瞩目的研究成果,培育出的抗条锈病的小偃系列品种及其衍生品种[256-258]、普冰系列及其衍生品种(张锦鹏,私人通讯)和陕麦号及西农号小麦[259-260]、抗黄矮病的张春号、临抗号、晋麦号小麦[261-262]和黑小麦品种[263-264]、抗白粉病的南农号小麦及其衍生品种[265-267]、抗条锈和白粉等病害的川农系列小麦及其衍生品种[268-269]和远丰号小麦[270]等在中国大面积推广应用。上述品种抗病性来源主要为Yr9、Yr41、Yr50、Pm21、Bdv2、Bdv3和尚未被证明命名的少数几个基因。

除此之外,值得一提的是,中国科学家分别将来自彭提卡偃麦草抗赤霉病基因Fhb7[189,271]和长穗偃麦草的尚未被命名的赤霉病基因[272-273]分别转移到小麦,创制了一批小麦-偃麦草染色体易位系,并将其导入中国主栽小麦,培育出了一批赤霉抗性达到中抗水平正在参加区域试验的小麦新品系,有望对小麦抗赤霉病育种发挥重要作用。

6 结论与展望
目前,众多个有明显育种价值的小麦-近缘植物染色体易位系/渐渗系被成功创制出来[4-5],并且有近140个抗病新基因被正式命名(表1—表6),但就基因利用状况来看,被利用到小麦抗病育种上的基因的比例还比较低。其原因可能是:(1)部分基因的抗性已经/正在丧失,例如Yr7、Yr9和Yr17等[274],Lr21、Lr26和Lr37等[234],Sr31、Sr34和Sr38等[275],Pm8、Pm17和Pm19等[276];(2)部分易位染色体具有遗传累赘,例如Yr8[277]、Yr38/Lr56[278]、Pm12和Pm20[179]等基因所在近缘植物染色体臂。因此,在今后的研究中,应该做到:(1)加强二倍体和四倍体小麦抗病基因向栽培小麦的导入与利用;(2)加强对有遗传累赘效应易位系的染色体工程诱导。通过抗病基因转育,创制出更多的抗病种质资源并对其进行育种学评价。目前,已有多个研究团队在开展这项工作[267,279];(3)加强对无遗传累赘且具优异抗性易位系[267,279-280]的利用工作。

克隆抗病基因是研究其抗病机理的基础。目前,从小麦近缘植物中克隆出的抗病基因主要包括Yr15[281]、Yr28[282]、Yr36[283]、Lr21[284]、Sr13[285]、Sr21[286]、Sr35[287]、Sr60[288]、Pm21[289-290]等。其中,除Yr28和Pm21[85,162]外,其他几个基因均源自二倍体或四倍体小麦[96,98,100,141,143-145]。由于缺乏参考基因组信息,目前,从小麦-近缘植物(这里指非小麦属物种)染色体易位系中克隆抗病基因还有一定困难。当前,克隆这些基因可以利用不同居群的抗病性不同的同一小麦近缘种进行杂交(或利用诱变技术创制突变体),配置抗感分离群体进行基因定位与克隆,例如Yr28[282]和Pm21[289]的克隆;还可以创制更多的小麦-近缘植物染色体结构变异体,将抗病基因定位到近缘植物某一染色体小片段上,进而利用已克隆的模式植物抗病基因所在染色体区间与上述小片段区间进行基因共线性分析与确证,同源克隆近缘植物的抗病基因。近期笔者及其合作者们利用该方法克隆了Pm12(待发表)。

从理论研究上讲,随着小麦族物种基因组测序工作的陆续开展与完成,能够用于抗病基因克隆的参考基因组信息越来越多,今后克隆小麦近缘植物抗病基因将会变得越来越容易,因此,这些基因的抗病调控机制以及不同物种共线性抗病基因的进化可能将成为新的研究热点。从应用研究上讲,小麦-黑麦1RS·1BL易位系、1RS·1AL易位系和小麦-偏凸山羊草2NS/2AS易位系等抗病优良种质的育成与利用在世界小麦育种史上做出了突出贡献,然而,这仅仅得益于对少数抗病基因的利用。虽然目前被利用到小麦育种中的抗病基因相对较少,但加强无遗传累赘的小麦-近缘植物易位系的创制与应用仍可能是今后小麦育种材料创新与新品种培育的一个重要发力点。

致谢:堪萨斯州立大学Friebe B教授、德克萨斯农工生命研究和推广中心Liu SY教授、北达科他州立大学Cai XW教授、悉尼大学Zhang P博士和李建波博士、阿德莱德大学Dundas I博士、John Innes Centre的Griffiths S研究员、CYMMYT刘彩云博士后、乌克兰国家种子与品种调查中心Motsnyi I研究员、电子科技大学杨足君教授、中国农业科学院张锦鹏研究员、西北农林科技大学王长有教授、鲁东大学崔法教授、山东农业大学鲍印广教授在不同国家小麦品种所含外源染色质信息搜集中给予的大力帮助,在此表示感谢。

References

[1] 董玉琛, 刘旭. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006.

DONG Y C, LIU X. Crops and their wild relatives in China. Beijing: China Agriculture Press, 2006. (in Chinese)

[2] 董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000.

DONG Y C, ZHENG D S. Wheat genetic resources of China. Beijing: China Agriculture Press, 2000. (in Chinese)

[3] 董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20(3): 78-81.

DONG Y C. Genepool of common wheat. Journal of Triticeae Crops, 2000, 20(3): 78-81. (in Chinese)

[4] JIANG J M, FRIEBE B, GILL B S. Recent advances in alien gene transfer in wheat. Euphytica, 1993, 73(3): 199-212.

[5] FRIEBE B, BADAEVA E D, GILL B S, TULEEN N A. Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome, 1996, 39(2): 272-276.

[6] NEVO E, CHEN G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell & Environment, 2010, 33(4): 670-685.

[7] IRIKI N, KAWAKAMI A, TAKATA K, KUWABARA T, BAN T. Screening relatives of wheat for snow mold resistance and freeing tolerance. Euphytica, 2001, 122(2): 335-341.

[8] GALIBA G, STOCKINGER E J, FRANCIA E, MILC J, KOCSY G, PECCHIONI N. Freezing tolerance in the Triticeae //Translational Genomics for Crop Breeding: Abiotic Stress, Yield and Quality, Volume 2. Manhattan, USA: John Wiley & Sons Ltd, 2013.

[9] FAROOQ S, NIAZI MLK, IQBAL N, SHAH T M. Salt tolerance potential of wild resources of the tribe Triticeae. Plant & Soil, 1989, 119(2): 255-260.

[10] COLMER D T. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57(5): 1059-1078.

[11] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交. 北京: 科学出版社, 1985.

LI Z S, RONG S, ZHONG G C, CHEN S Y, MU S M. Wheat wild hybridization. Beijing: Science Press, 1985. (in Chinese)

[12] SHARMA H C, GILL B S. Current status of wide hybridization in wheat. Euphytica, 1983, 32(1): 17-31.

[13] FRIEBE B, JIANG J, GILL B S, DYCK P L. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical & Applied Genetics, 1993, 86(2/3): 141-149.

[14] REN T H, YANG Z J, YAN B J, ZHANG H Q, FU S L, REN Z L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica, 2009, 169(2): 207-213.

[15] LI Q, LU Y, PAN C, YAO M, ZHANG J, YANG X, LIU W, LI X, XI Y, LI L. Chromosomal localization of genes conferring desirable agronomic traits from wheat-Agropyron cristatum disomic addition line 5113. PloS One, 2016, 11(11): e0165957.

[16] ZELLER F J, HSAM S L K. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin//Sakamoto S. ed. Proceedings of 6th International Wheat Genetic Symposium. Kyoto, Japan: Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, 1983: l61-173.

[17] GONG W P, HAN R, LI H S,SONG J M, YAN H F, LI G Y, LIU A F, CAO X Y, GUO J, ZHAI S N, CHENG D G, ZHAO Z D, LIU C, LIU J J. Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Frontiers in Plant Science, 2017, 8: 1743.

[18] LIU C, YANG Z J, JIA J Q, LI G R, ZHOU J P, REN Z L. Genomic distribution of a long terminal repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Research Communications, 2009, 37(3): 363-372.

[19] 刘成, 李光蓉, 杨足君. 簇毛麦与小麦染色体工程育种. 北京: 中国农业科学技术出版社, 2013.

LIU C, LI G R, YANG Z J. Dasypyrum and wheat chromosome engineering breeding. Beijing: China Agriculture Science and Technology Press, 2013. (in Chinese)

[20] 郑有良. 小麦特异种质资源研究. 成都: 四川科学技术出版社, 1999.

ZHENG Y L. Evaluation of special germplasm resources in Triticeae. Chengdu: Sichuan Agriculture Science and Technology Press, 1999. (in Chinese)

[21] JOPPA L R, WILLIAMS N D. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome, 1988, 30(2): 222-228.

[22] BROWN-GUEDIRA G L, BADAEVA E D, GILL B S, COX T S. Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species. Theoretical & Applied Genetics, 1996, 93(8): 1291-1298.

[23] LEIGHTY C, SANDO W, TAYLOR J. Intergeneric hybrids in Aegilops, Triticum and Secale. Journal of Agricultural Research, 1926, 33: 101-141.

[24] KIHARA H, LILIENFELD F. Genomanalyse bei Triticum und Aegilops. Cytologia, 1934, 6(1): 87-122.

[25] RILEY R, CHAPMAN V, JOHNSON R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 1968, 217(5126): 383-384.

[26] 李集临, 曲敏, 张延明. 小麦染色体工程. 北京: 科学出版社, 2011.

LI J L, QU M, ZHANG Y M. Wheat chromosome engineering. Beijing: Science Press, 2011. (in Chinese)

[27] BACKHOUSE W, BACKHOUSE W. Note on the inheritance of “crossability”. Journal of Genetics, 1916, 6(2): 91-94.

[28] 鲍文奎. 八倍体小黑麦育种与栽培. 贵阳: 贵州人民出版社, 1977.

BAO W K. Breeding and cultivation of octaploid triticale. Guiyang: Guizhou People’s Press, 1977. (in Chinese)

[29] REN T H, CHEN F, YAN B J, ZHANG H Q, REN Z L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica, 2012, 183(2): 133-146.

[30] DVOŘAK J. Meiotic pairing between single chromosomes of diploid Agropyron elongatum and decaploid A. elongatum in Triticum aestivum. Canadian Journal of Genetics and Cytology, 1975, 17(3): 329-336.

[31] 李振声. 植物远缘杂交概说. 西安: 陕西科学出版社, 1980.

LI Z S. Introduction to plant distant hybridization. Xi’an: Shanxi Science Press, 1980. (in Chinese)

[32] 畅志坚, 赵怀生, 李生海. 小麦与天蓝偃麦草远缘杂交中结实性的研究. 山西农业科学, 1992, 2: 7-10.

CHANG Z J, ZHAO H S, LI S H, Study on fruitfulness of distant hybridization between Triticum aestivum and Elymus elata. Shanxi Agricultural Science, 1992, 2: 7-10. (in Chinese)

[33] HYDE B B. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. American Journal of Botany, 1953, 40: 174-182.

[34] SEARS E. Addition of the genome of Haynaldia villosa to Triticum aestivum. American Journal of Botany, 1953: 168-174.

[35] LIU D J, CHEN P D, PEI G Z. Transfer of Hynanadia villosa chromosomes into Triticum eastivum//Miller T E, Koebner R M D. ed. Proceedings 7th International Wheat Genetic Symposium. Cambridge UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 355-361.

[36] VON BOTHMER R, CLAESSON L. Production and meiotic pairing of intergeneric hybrids of Triticum × Dasypyrum species. Euphytica, 1990, 51: 109-117.

[37] LIMIN A E, FOWLER D B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33(4): 581-584.

[38] 李立会, 董玉琛. 普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究. 中国科学: 化学生命科学地学, 1990, 1(5): 492-497.

LI L H, DONG Y C. Generation and cytogenetics of intergeneric hybrids between Triticum aestivum and Agropyron deserticola. Chinese Science:Geosciences of Chemical Life Sciences, 1990, 1(5): 492-497. (in Chinese)

[39] JAUHAR P. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploid crested wheatgrass (Agropyron cristatum). Hereditas, 1992, 116(1/2): 107-109.

[40] KRUSE A. Hordeum×Triticum hybrids. Hereditas, 1973, 73(1): 157-161.

[41] SHEPHERD K, ISLAM A. Wheat-barley hybrids-the first eighty years. wheat science today and tomorrow. Cambridge: Cambridge University Press, 1981.

[42] 蒋继明, 刘大钧. 普通小麦与野生大麦的属间杂交. 作物学报, 1990, 16(4): 324-328.

JIANG J M, LIU D J. Intergeneric hybridization between common wheat and wild barley. Acta Agronomica Sinica, 1990, 16(4): 324-328. (in Chinese)

[43] MUJEEB-KAZI A, BERNARD M. Somatic chromosome variations in backcross I progenies from intergeneric hybrids involving some Triticeae. Cereal Research Communications, 1982, 10(1/2): 41-45.

[44] LU B R, VON BOTHMER R. Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica, 1991, 58(1): 81-95.

[45] 孙其信, 高建伟. 普通小麦与无融合生殖披碱草属间杂种F1的产生及其分子鉴定. 农业生物技术学报, 1997, 5(4): 313-317.

SUN Q X, GAO J W. Production of intergeneric hybrid between wheat and apomictic Elymus rectisetus and its molecular identification. Journal of Agricultural Biotechnology, 1997, 5(4): 313-317. (in Chinese)

[46] 陈孝, 张文祥, 黄惠宇. 普通小麦与新疆大赖草杂种幼胚离体培养技术的研究. 农业新技术, 1989(2): 4-7.

CHEN X, ZHANG W X, HUANG H Y. Study on in vitro culture of immature embryos of hybrids between common wheat and Xinjiang Leymus racemosus. New Agricultural Technology, 1989(2): 4-7. (in Chinese)

[47] 张学勇, 董玉琛, 杨欣明, 李翠钗. 普通小麦(Triticum aestivum)和毛穗赖草(Leymus paboanus)的杂交, 杂种细胞无性系的建立及植株再生. 作物学报, 1992, 18(4): 258-265, 321-322.

ZHANG X Y, DONG Y C, YANG X M, LI C C. Hybridization of Triticum aestivum with Lesmus paboanus the establishment of somatic callus clones of the hybrid embryos and plant regeneration. Acta Agronomica Sinica, 1992, 18(4): 258-265, 321-322. (in Chinese)

[48] 陈佩度, 孙文献, 刘文轩, 袁建华, 刘朝晖, 冯以高, 王苏玲, 周波, 刘大钧. 将大赖草抗赤霉病基因导入普通小麦及抗赤霉病基因的染色体定位. 遗传, 1998, 20(增刊): 126.

CHENG P D, SUN W X, LIU W X, YUAN J H, LIU Z H, FENG Y G, WANG S L, ZHOU B, LIU D J. Introduction of scab resistance gene from Leymus racemosus into Triticum aestivum and chromosome location of scab resistance gene. Hereditas, 1998, 20(S1): 126. (in Chinese)

[49] 陈勤, 周荣华, 李立会, 李秀全, 杨欣明, 董玉琛. 第一个小麦与新麦草属间杂种. 科学通报, 1988, 33(1): 64-67.

CHEN Q, ZHOU R H, LI L H, LI X Q, YANG X M, DONG Y C. The first intergeneric hybrid between wheat and Psathyrostachys juncea. Chinese Science Bulletin, 1988, 33(1): 64-67. (in Chinese)

[50] 陈漱阳, 侯文胜, 张安静, 傅杰, 杨群慧. 普通小麦-华山新麦草异附加系的选育及细胞遗传学研究. 遗传学报, 1996, 23(6): 447-452, 488.

CHEN S Y, HOU W S, ZHANG A J, FU J, YANG Q H. Breeding and cytogenetic study of Triticum aestivum-Pasthyrostachys huashanica alien addition lines. Acta Genetica Sinica, 1996, 23(6): 447-452, 488. (in Chinese)

[51] KANG H Y, ZHANG Z J, XU L L, QI W L, TANG Y, WANG H, ZHU W, LI D Y, ZENG J, WANG Y. Characterization of wheat-Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome, 2016, 59(4): 1.

[52] 刘建文, 董玉琛. 普通小麦×东方旱麦草属间杂种的产生及无性系的建立. 遗传学报, 1995, 22(2): 116-121.

LIU J W, DONG Y C. Establishment of somaclones and regeneration of plant from Triticum aestivum×Eremopyrum orientale hybrid. Acta Genetica Sinica, 1995, 22(2): 116-121. (in Chinese)

[53] 张桂芳, 刘建文, 黄远樟, 丁敏, 唐顺学, 贾旭. 普通小麦与东方旱麦草杂交世代的细胞遗传学研究. 植物学报, 1999, 41(11): 1150-1154.

ZHANG G F, LIU J W, HUANG Y Z, DING M, TANG S X, JIA X. Cytogenetic studies on the cross-generations between Triticum aestivum and Eremopyrum orientale. Acta Botanica Sinica, 1999, 41(11): 1150-1154. (in Chinese)

[54] LIU C, QI L, LIU W, ZHAO W, GILL B S. Development of a set of compensating Triticum aestivum-Dasypyrum villosum robertsonian translocation lines. Genome, 2011, 54(10): 836-844.

[55] LIU C, GONG W, HAN R, GUO J, LI G, LI H, SONG J, LIU A, CAO X, ZHAI S. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Scientific Reports, 2019, 9(1): 4773.

[56] 翁跃进, 董玉琛. 普通小麦-顶芒山羊草异源附加系的创建和鉴定: I. 小麦花药培养对创建普通小麦-顶芒山羊草异源附加系的作用. 作物学报, 1995, 21(1): 39-44.

WENG Y J, DONG Y C. Development of Aegilops comosa addition lines in common wheat (Triticum aestivum L.): I. Effection of wheat anther culture to development of Aegilops comosa addition lines in common wheat. Acta Agronomica Sinica, 1995, 21(1): 39-44. (in Chinese)

[57] 王洪刚, 刘树兵, 高居荣, 孔凡晶. 小麦与钩刺山羊草杂种的育性、抗病性和细胞遗传学研究. 麦类作物学报, 2000, 20(3): 1-5.

WANG H G, LIU S B, GAO J R, KONG F J. Study on fertility, disease resitance and cytogentics of hybrid between Triticum aestivum and Aegiliops triumcialis. Journal of Triticeae Crops, 2000, 20(3): 1-5. (in Chinese)

[58] REN Z, ZHANG H. Induction of small-segment-translocation between wheat and rye chromosomes. Science in China (Series C), 1997, 40(3): 323.

[59] 李爱霞. 普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病和白粉病抗性鉴定[D]: 南京: 南京农业大学, 2006.

LI A X. Development of wheat landrace Huixianhong alian chromosome lines derived from Chinese rye cultivar Jingzhouheimai and its WSSMV and powdery mildew resistance identification[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)

[60] LEI M P, LI G R, LIU C, YANG Z J. Characterization of wheat-Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome, 2012, 55(10): 765-774.

[61] 孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法. 作物学报, 1981, 7(1): 51-58.

SUN S D. The approach and methods of breeding new varieties and new species from agrotriticum hybrids. Acta Agronomica Sinica, 1981, 7(1): 51-58. (in Chinese)

[62] 张学勇, 李振声. “缺体回交法”选育普通小麦异代换系方法的研究. 遗传学报, 1989: (6): 420-429.

ZHANg X Y, LI Z S. Studies on the nullisomic backcrossing procedures for producing alien substitution lines of common wheat. Acta Genetica Sinica, 1989, 16(6): 420-429. (in Chinese)

[63] 畅志坚. 几个小麦-偃麦草新种质的创制及分子细胞遗传学分析[D]. 雅安: 四川农业大学, 1999.

CHANG Z J. Creation and molecular cytogenetic analysis of several new germplasms of Triticum aestivum[D]. Ya'an: Sichuan Agricultural University, 1999. (in Chinese)

[64] 傅杰, 周荣华, 赵继新, 陈漱阳, 杨群慧. 不同小麦背景小簇麦双二倍体的品质、抗病性及分子细胞遗传学研究. 西北植物学报, 2001, 21(6): 1103-1109.

Fu J, ZHOU R H, ZHAO J X, CHEN S Y, YANG Q H. Research on quality, disease resistance and molecular cytogenetics of Triticum aestivum-Haynaldia villosa amphidiploids with different wheat genetic background. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(6): 1103-1109. (in Chinese)

[65] ZHANG J, ZHANG J, LIU W H, HAN H, LU Y, YANG X, LI L. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical & Applied Genetics, 2015, 128(9): 1827-1837.

[66] LU M, LU Y, LI H, PAN C, GUO Y, ZHANG J, YANG X, LI X, LIU W, LI L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PloS one, 2016, 11(7): e0159577.

[67] SONG L, LU Y, ZHANG J, PAN C, YANG X, LI X, LIU W, LI L. Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome, 2016, 59(10): 840-850.

[68] ISLAM A K M R, SHEPHERD K W, SPARROW D H B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity, 1981, 46(2): 161-174.

[69] KONG F, WANG H, CAO A, QIN B, JI J, WANG S, WANG X E. Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. Journal of Genetics and Genomics, 2008, 35(1): 673-678.

[70] FANG Y, YUAN J, WANG Z, WANG H, XIAO J, YANG Z, ZHANG R, QI Z, XU W, HU L. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes. Journal of Genetics and Genomics, 2014, 41(8): 439-447.

[71] MORRIS K L, RAUPP W J, GILL B S. Isolation of Ht genome chromosome additions from polyploid Elymus trachycaulus (StStHtHt) into common wheat (Triticum aestivum). Genome, 1990, 33(1): 16-22.

[72] 王长有, 李小忠, 吉万全, 张改生, 王秋英, 薛秀庄. 普通小麦与Elymus rectisetus衍生后代的细胞遗传学和形态学研究. 麦类作物学报, 2003, 23(4): 5-9.

WANG C Y, LI X Z, JI W Q, ZHANG G S, WANG Q Y, XUE X Z. Cytogenetics and morphology of the derivatives from a cross between Tritivum aestivum and apimictic Elymus retisetus. Journal of Triticeae Crops, 2003, 23(4): 5-9. (in Chinese)

[73] DOU Q, LEI Y, MOTT I W, WANG R R. Characterization of alien chromosomes in backcross derivatives of Triticum aestivum×Elymus rectisetus hybrids using molecular markers and sequential multi-color FISH/GISH. Genome, 2012, 55(5): 337-347.

[74] QI L L, WANG S L, CHEN P D, LIU D J, FRIEBE B, GILL B S. Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theoretical & Applied Genetics, 1997, 95(7): 1084-1091.

[75] 刘文轩, 陈佩度, 刘大均. 利用荧光原位杂交技术检测导入普通小麦的大赖草染色质. 遗传学报, 1999, 26(5): 546-551.

LIU W X, CHEN P D, LIU D J. Detection of Leymus racemosus chromatin in wheat by fluorescence in situ hybridization. Acta Genetica Sinica, 1999, 26(5): 546-551. (in Chinese)

[76] 王秀娥, 陈佩度, 周波, 袁建华, 刘文轩, GILL B S, 刘大钧. 小麦-大赖草易位系的RFLP分析. 遗传学报, 2001, 28(12):1142-1150.

WANG X E, CHEN P D, ZHOU B, YUAN J H, LIU W X, GILL B S, LIU D J. RFLP analysis of wheat-L .racemosustranslocation lines. Acta Genetica Sinica, 2001, 28(12): 1142-1150. (in Chinese)

[77] 周荣华, 贾继增, 董玉琛, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. 用基因组原位杂交技术检测小麦-新麦草杂交后代. 中国科学(C辑), 1997, 27(6): 543-549.

ZHOU H R, JIA J Z, DONG Y C, SCHWARZACHER T, MILLER T E, READER S M, WU S B, GALE M D. Detection of hybrid progenies of wheat-Psathyrostachys juncea by genome in situ hybridization. Science in China (Series C),1997, 27(6): 543-549. (in Chinese)

[78] 傅杰, 王美南, 赵继新, 陈漱阳, 侯文胜, 杨群惠. 抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用. 西北植物学报, 2003, 23(12): 2157-2162.

FU J, WANG M N, ZHAO J X, CHEN S Y, HOU W S , YANG Q H. Studies on cytogenetics and utilization of wheat-Psathyrostachys huashanicamedium material H8911 with resistance to wheat take-all fungus. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12): 2157-2162. (in Chinese)

[79] 武军, 赵继新, 陈新宏, 刘淑会, 杨群慧, 刘文献, 魏芳琴, 董剑, 朱建楚. 普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析. 麦类作物学报, 2007, 27(5): 772-775.

WU J, ZHAO J X, CHEN X H, LIU S H, YANG Q H, LIU W X, WEI F Q, DONG J, ZHU J C. Cytology characteristic and GISH analysis on the progenies derived from common wheat (T. aestivum L.) ×Psathyrostachys huashanica. Journal of Triticeae Crops, 2007, 27(5): 772-775. (in Chinese)

[80] KANG H, WANG Y, FEDAR G, CAO W, ZHANG H, FAND X, SHA L, XU L, ZHENG Y, ZHOU Y. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PloS One, 2011, 6(7): e21802.

[81] SHARMA H C. How wide can a wide cross be? Euphytica, 1995, 82(1): 43-64.

[82] 刘成, 闫红飞, 宫文萍, 李光蓉, 刘大群, 杨足君. 小麦叶锈病新抗源筛选. 植物遗传资源学报, 2013, 14(5): 936-944.

LIU C, YAN H F, GONG W P, LI G R, LIU D Q, YANG Z J. Screening of new resistance sources of wheat leaf rust. Journal of Plant Genetic Resources, 2013, 14(5): 936-944. (in Chinese)

[83] BARIANA H S, MCINTOSH R A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 1993, 36(3): 476-482.

[84] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology, 1995, 85(3): 375-381.

[85] SINGH R P, NELSON J C, SORRELLS M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 2000, 40(4): 1148-1155.

[86] MARAIS G, MCCALLUM B, SNYMAN J, PRETORIUS Z, MARAIS A. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding, 2005, 124(6): 538-541.

[87] MARAIS G F, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica, 2006, 149(3): 373-380.

[88] KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical & Applied Genetics, 2007, 114(8): 1379-1389.

[89] MARAIS F, MARAIS A, MCCALLUM B, PRETORIUS Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Science, 2009, 49(3): 871-879.

[90] BANSAL M, KAUR S, DHALIWAL H S, BAINS N S, BARIANA HS, CHHUNEJA P, BANSAL U K. Mapping of Aegilops umbellulata-derived leaf rust and stripe loci in wheat. Plant Pathology, 2016, 66(1): 38-44.

[91] ZELLER F J. 1B/1R wheat-rye chromosome substitutions and translocations//Sears E R, Sears L M S (Eds). Proceedings 4th International Wheat Genetics Symposium. Columbia, USA: University of Missouri Press, 1973: 209-222.

[92] LIU J, CHANG Z, ZHAN X, YANG Z, LI X, JIA J, ZHAN H, GUO H, WANG J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theoretical & Applied Genetics, 2013, 126(1): 265-274.

[93] MACER R C F. The forma and monosomic genetic analysis of stripe rust (Puccinia stritiformis) resistance in wheat//Mackey J. ed. Proceedings of the 2nd International Wheat Genetics Symposium. Lund University, Lund, Sweden. Hereditas Suppl 2, 1963: 127-142.

[94] MCINTOSH R A, LAGUDAH E S. Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust. Plant Breeding, 2000, 119(1): 81-93.

[95] XU L S, WANG M N, CHENG P, KANG Z S, HULBERT S H, CHEN X M. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theoretical and Applied Genetics, 2013, 126(2): 523-533.

[96] MCINTOSH R A, SILK J, THE T T. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15, for resistance to stripe rust. Euphytica, 1996, 89(3): 395-399.

[97] MARAIS G F, PRETORIUS Z A, WELLINGS C R, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 2005, 143(1/2): 115-123.

[98] CHICAIZA O, KHAN I A, ZHANG X, BREVIS C J, JACKSON L, CHEN X M, DUBCOVSKY J. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Science, 2006, 46: 485-487.

[99] SEARS E R. The transfer of leaf rust resistance from Aegilops umbellulate to wheat//Genetics in Plant Breeding. Brookhaven Symposia in Biology No. 9; Brookhaven National Laboratory: Upton, NY 1956.

[100] ROWLAND G G, KERBER E R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology, 1974, 16(1): 137-144.

[101] DYCK P L, KERBER E R. Inheritance in hexaploid wheat of adult plant leaf resistance derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology, 1970, 12(1): 175-180.

[102] KERBER E R. Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Science, 1987, 27(2): 204-206.

[103] RAUPP W J, SINGH S, BROWN-GUEDIRA G L, GILL B S. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theoretical and Applied Genetics, 2001, 102(2/3): 347-352.

[104] COX T S, RAUPP W J, GILL B S. Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Science, 1994, 34(2): 339-343.

[105] KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides×Triticum monococcum. Genome, 1990, 33(4): 530-537.

[106] DVOŘ K J, KNOTT D R. Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome, 1990, 33(6): 892-897.

[107] DUBCOVSKY J, LUKASZEWSKI A J, ECHAIDE M, ANTONELLI E F, PORTER D R. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Science, 1998, 38(6): 1655-1660.

[108]HELGUERA M, VANZETTI L, SORIA M, KHAN I A, KOLMER J, DUBCOVSKY J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Science, 2005, 45(2): 728-734.

[109] MARAIS G F, BEKKER T A, EKSTEEN A, MCCALLUM B, FETCH T, MARAIS A S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica, 2010, 171(1): 71-85.

[110] MCINTOSH R, YAMAZAKI Y, DEVOS K M,, DUBCOVSKY J, ROGERS W J, APPELS R. Catalogue of gene symbols//KOMUG- Integrated Wheat Science Database, 2003:http://shigen.lab.nig.ac.jp/ wheat/ komugi/top/top.jsp.

[111] KURAPARTHY V, SOOD S, CHHUNEJA P, DHALIWAL H S, KAUR S, BOWDEN R L, GILL B S. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Science, 2007, 47(5): 1995-2003.

[112] MARAIS G, MCCALLUM B, MARAIS A. Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breeding, 2008, 127(4): 340-345.

[113] DRISCOLL C, ANDERSON L. Cytogenetic studies of Transec-a wheat-rye translocation line. Canadian Journal of Genetics and Cytology, 1967, 9(2): 375-380.

[114] SINGH N, SHEPHERD K, MCINTOSH R. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theoretical and Applied Genetics, 1990, 80(5): 609-616.

[115] MCINTOSH R A, FRIEBE B, JIANG J, THE D, GILL B S. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 1995, 82(2): 141-147.

[116] SARMA D, KNOTT D. The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Canadian Journal of Genetics and Cytology, 1966, 8(1): 137-143.

[117] MCINTOSH R, DYCK P, GREEN G. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Australian Journal of Agricultural Research, 1977, 28(1): 48-49.

[118] FRIEBE B, JIANG J M, Gill B S, DYCK P L. Radiation-induced nonhomoelogous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86: 141-149.

[119] SEARS E R. Agropyron-wheat transfers induced by homoeologous pairing//Sears E R, Sears L M S. ed. Proceedings 4th International Wheat Genetics Symposium. Columbia, USA: University of Missouri Press, 1973: 191-199.

[120] FRIEBE B, WILSON D, RAUPP W, GILL B, BROWN-GUEDIRA G. Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm. Annual Wheat Newsletter, 2005, 51: 188-189.

[121] DYCK P L, SAMBORSKI D J. The genetics of two alleles for leaf rust resistance at the Lr14 locus in wheat. Canadian Journal of Genetics and Cytology, 1970, 12(4): 689-694.

[122] KOLMER J A, BERNARDO A, BAI G, HAYDEN M J, ANDERSON J A. Thatcher wheat line RL6149 carries Lr64, and a second leaf rust resistance gene on chromosome 1DS. Theoretical and Applied Genetics, 2019, 132(10): 2809-2814.

[123] MCINTOSH R A, DYCK P L. Cytogenetical studies in wheat VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Australian Journal of Biological Sciences, 1975, 28(2): 201-212.

[124] KOLMER J A, ANDERSON J A, FLOR J M. Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Science, 2010, 50(50): 2392-2395.

[125] BROWNGUEDIRA G L, SINGH S, FRITZ A K. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology, 2003, 93(7): 784-789.

[126] MAGO R, VERLIN D, ZHANG P, BANSAL U, BARIANA H, JIN Y, ELLIS J, HOXHA S, DUNDAS I. Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theoretical and Applied Genetics, 2013, 126(12): 2943-2955.

[127] FARIS J D, XU S S, CAI X, FRIESEN T L, JIN Y. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Research, 2008, 16(8): 1097-1105.

[128] LIU W X, JIN Y, ROUSE M, FRIEBE B, GILL B, PUMPHREY M O. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theoretical and Applied Genetics, 2011, 122: 1537-1545.

[129] LIU W, ROUSE M, FRIEBE B, JIN Y, GILL B, PUMPHREY M O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Research, 2011, 19(5): 669-682.

[130] SINGH S J, MCINTOSH R A. Allelism of two genes for stem rust resistance in triticale. Euphytica, 1988, 38(2): 185-189.

[131] MCINTOSH R A. Catalogue of gene symbols for wheat// Miller T E, Koebner R M D. ed. Proceedings7th International Wheat Genetics Symposium. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 1225-1323.

[132] MAGO R, ZHANG P, VAUTRIN S. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants, 2015, 1(12): 15186.

[133] RAHMATOV M, ROUSE M N, NIRMALA J, DANILOVA T, FRIEBE B, STEFFENSON B J, JOHANSSON E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59into wheat. Theoretical and Applied Genetics, 2016, 129(7): 1383-1392.

[134] QI L, PUMPHREY M, FRIEBE B, ZHANG P, QIAN C, BOWDEN R, ROUSE M, JIN Y, GILL B. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011, 123(1): 159-167.

[135] KNOTT D. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Canadian Journal of Plant Science, 1961, 41(1): 109-123.

[136] KIBIRIGE-SEBUNYA I, KNOTT D R. Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Genome, 1983, 25(3): 215-221.

[137] LIU W, DANILOVA T V, ROUSE M N, BOWDEN R L, FRIEBE B, GILL B S, PUMPHREY M O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theoretical and Applied Genetics, 2013, 126(5): 1167-1177.

[138] KNOTT D R. The inheritance of resistance to stem rust races 15B-1 and 56 in Fren. Canadian Journal of Genetics and Cytology, 1983, 25(3): 283-285.

[139] KNOTT D R. The inheritance of stem rust resistance in wheat// MacKey J. ed. Proceedings of the Second International Wheat Genetics Symposium. Lund University, Lund, Sweden 1963. Heriditas Supplement 2, 1966: 156-166.

[140] MCINTOSH R A, LUIG N H. Recombination between genes for reaction to P. graminis at or near the Sr9 locus// Sears E R, Sears L M S. ed. Proceedings 4th International Wheat Genetics Symposium. Columbia, USA: University of Missouri Press, 1973: 425-432.

[141] KNOTT D R The inheritance of rust resistance IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Canadian Journal of Plant Science, 1962, 42: 415-419.

[142] MCINTOSH R A, LUIG N H, BAKER E P. Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in hope and related wheat cultivars. Australian Journal of Biological Sciences, 1967, 20(20): 1181-1192.

[143] THE T T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nature New Biology, 1973, 241(112): 256.

[144] MCINTOSH R A, DYCK P L, THE T T, CUSICK J E, MILNE D L. Cytogenetical studies in wheat XIII. Sr35-a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Plant breeding, 1984, 92: 1-14.

[145] CHEN S, GUO Y, BRIGGS J, DUBACH F, CHAO S M, ZHANG W J, ROUSE M N, DUBCOVSKY J. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theoretical and Applied Genetics, 2018, 131(11): 625-635.

[146] SHEEN S J, SNYDER L A. Studies on the inheritance of resistance to six stem rust cultures using chromosome substitution lines of a marquis wheat selection. Canadian Journal of Genetics and Cytology, 1964, 6(1): 74-82.

[147] MCINTOSH R A. Triticum timopheevi as a source of resistance to wheat stem rust. Plant breeding, 1971, 66: 240-248.

[148] JIA J, DEVOS K M, CHAO S, MILLER T E, READER S M, GALE M D. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theoretical and Applied Genetics, 1996, 92(5): 559-565.

[149] HSAM S L K, LAPOCHKINA I F, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica, 2003, 133(3): 367-370.

[150] PETERSEN S, LYERLY J H, WORTHINGTON M L, PARKS W R, COWGER C, MARSHALL D S, BROWN-GUEDIRA G, MURPHY J P. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genetics, 2015, 128(2): 303-312.

[151] LUTZ J, HSAM S L K, LIMPERT E, ZELLER F J. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L.. Heredity, 1995, 74(2): 152-156.

[152] MIRANDA L M, MURPHY J P, MARSHALL D, LEATH S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113(8): 1497-1504.

[153] MIRANDA L M, MURPHY J P, MARSHALL D, COWGER C, LEATH S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114(8): 1451-1456.

[154] WIERSMA A T, PULMAN J A, BROWN L K, COWGER C, OLSON E L. Identification of Pm58 from Aegilops tauschii. Theoretical and Applied Genetics, 2017, 130(6): 1-11.

[155] CEOLONI C, DEL S G, PASQUINI M, TESTA A, MILLER T E, Koebner R M D. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination// Miller T E, Koebner R M D. ed. Proceedings of the 7th International Wheat Genetics Symposium. Cambridge, UK: Institute of Plant Science Research, Cambridge Laboratory, 1988: 221-226.

[156] LIU W, KOO D H, XIA Q, LI C, BAI F, SONG Y, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 2017, 130(4): 841-848.

[157] ZELLER F J, KONG L, HARTL L, MOHLER V, HSAM S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica, 2002, 123(2): 187-194.

[158] DRISCOLL C, JENSEN N. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances 1. Crop Science, 1965, 5(3): 279-280.

[159] HEUN M. Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology, 1990, 80(10): 1129-1133.

[160] FRIEBE B, HEUN M, TULEEN N, ZELLER F J, GILL B S. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Science, 1994, 34(3): 621-625.

[161] HAO M, LIU M, LUO J T, FAN C L, YI Y J, ZHANG L Q, YUAN Z W, NING S Z, ZHENG Y L, LIU D C. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Frontiers in Plant Science, 2018, 9: 1040.

[162] CHEN P D, QI L L, ZHOU B, ZHANG S Z, LIU D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical & Applied Genetics, 1995, 91(6/7): 1125-1128.

[163] ZHANG R, SUN B, CHEN J, CAO A, XING L, FENG Y, LAN C, CHEN P. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics, 2016, 129(10): 1975-1984.

[164] ZHANG R, FAN Y, KONG L, WANG Z, WU J, XING L, CAO A, FENG Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theoretical and Applied Genetics, 2018, 131(12): 2613-2620.

[165] LUO P G, LUO H Y, CHANG Z J, ZHANG HY, ZHANG M, REN ZL. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theoretical and Applied Genetics, 2009, 118(6): 1059-1064.

[166] HE R, CHANG Z, YANG Z, YUAN Z, ZHAN H, ZHANG X, LIU J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theoretical and Applied Genetics, 2009, 118(6): 1173-1180.

[167] ZHAN H, LI G, ZHANG X, LI X, GUO H, GONG W, JIA J, QIAO L, REN Y, YANG Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PloS One, 2014, 9(11): e113455.

[168] HSAM S L K, HUANG X Q, ERNST F, HARTL L, ZELLER F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell). 5. Alleles at the Pm1 locus. Theoretical and Applied Genetics, 1998, 96: 1129-1134.

[169] SCHMOLKE M, MOHLER V, HARTL L, ZELLER F J, HSAM S L K. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Molecular Breeding, 2012, 29(2): 449-456.

[170] SHI A N, LEATH S, MURPHY J P. A major gene for powdery mildew resistance transferred to common wheat from wild eikorn wheat. Phytopathology, 1998, 88(2): 144-147.

[171] THE T T. MCINTOSH R A, BENNETT F G A. Cytogenetical studies in wheat. IX. Monosomic analysis, telocentric mapping and linkage relationship of gene Sr21, Pm4 and Mle. Austrilian Journal of Biological Sciences, 1979, 32: 115-125.

[172] LAW C N, WOLFE M S. Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Canadian Journal of Genetics and Cytology, 1966, 8: 462-470.

[173] PIARULLI L, GADALETA A, MANGINI G, SIGNORILE M A, PASQUINI M, BLANCO A, SIMEONE R. Molecular identification of a powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Science, 2012, 196: 101-106.

[174] MOHLER V, BAUER C, SCHWEIZER G, KEMPF H, HART L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. Journal of Applied Genetics, 2013, 54(3): 259-263.

[175] READER S M, MILLER T E. The introduction into breed wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53(1): 57-60.

[176] RONG J K, MILLET E, MANISTERSKI J, FELDMAN M. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121-126.

[177] LIU Z, SUN Q, NI Z, NEVO E, YANG T. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123(1): 21-29.

[178] BLANCO A, GADALETA A, CENCI A, CARLUCCIO A, ABDELBACKI A M M, SIMEONE R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theoretical and Applied Genetics, 2008, 117: 135-142.

[179] LI G, FANG T, ZHANG H, XIE C, LI H, YANG T, NEVO E, FAHIMA T, SUN Q, LIU Z. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2009, 119: 531-539.

[180] HUA W, LIU Z, ZHU J, XIE C, YANG T, ZHOU Y, DUAN X, SUN Q, LIU Z. Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 2009, 119: 223-230.

[181] ZHANG D Y, ZHU K Y, DONG L L, LIANG Y, LI G Q, FANG T L, GUO G H, WU Q H, XIE J Z, CHEN Y X, LU P, LI M M, ZHANG H Z, WANG ZX, Zhang Y, SUN Q X, LIU Z Y. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. The Crop Journal, 2019, 7: DOI: 10.1016/j. cj.2019.03.003.

[182] ZELLER F J, HSAM S L K. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.) // Slinkard A E. ed. Proceedings of the 9th International Wheat Genetics Symposium. Vol.1. Saskatoon, Canada: University Extension Press, 1998: 178-180.

[183] ZOU S, WANG H, LI Y, KONG Z TANG D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytologist, 2018, 218(1): 298-309.

[184] JORGENSEN J H. Gene Pm6 for resistance to powdery mildew in wheat. Euphytica, 1973, 22: 43.

[185] JARVE K, PEUSHA H O, TSYMBALOVA J , TAMM S, DEVOS K M, ENNO T M. Chromosomal location of a Triticum timopheevii- derived powdery mildew resistance gene transferred to common wheat. Genome, 2000, 43(2): 377-381.

[186] PERUGINI L D, MURPHY J P, MARSHALL D, BROWN- GUEDIRA G. Pm37, a new broadly powdery mildew resistance gene from Triticum timopheevii.Theoretical and Applied Genetics, 2008, 116: 417-425.

[187] QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusariumhead blight disease of wheat. Theoretical and Applied Genetics, 2008, 117(7): 1155-1166.

[188] CAINONG J C, BOCKUS W W, FENG Y, CHEN P, QI L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensisin to wheat. Theoretical and Applied Genetics, 2015, 128(11): 1-9.

[189] GUO J, ZHANG X, HOU Y, CAI J, KONG L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015, 128(11): 2301-2316.

[190] TAGLE A G, CHUMA I, TOSA Y. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology, 2015, 105(4): 495-499.

[191] SIMON M R, KHLESTKINA E K, CASTILLO N S, BORNER A. Mapping quantitative resistance to septoria tritici blotch in spelt wheat. European Journal of Plant Pathology, 2010, 128(3): 317-324.

[192] TADESSE W, HSAM S L K, WENZEL G, ZELLER F J. Chromosome location of a gene conferring resistance to Pyrenophora tritici-repentis in Ethiopian wheat cultivars. Euphytica, 2008, 162(3): 423-430.

[193] TADESSE W, SCHMOLKE M, MOHLER V, WENZEL G, Hsam S L K, ZELLER F J. Molecular mapping of resistance genes to tan spot (Pyrenophora tritici repentis race 1) in synthetic wheat lines. Theoretical and Applied Genetics, 2007, 114: 855-862.

[194] SINGH P K, MERGOUM M, GONZALEZ-HERNANDZ J L, ALI S, ADHIKARI T B, KIANIAN S F, ELIAS E M, HUGHES G R. Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Molecular Breeding, 2008, 21(3): 293-304.

[195] MCINTOSH R A, DUBCOVSKY J, ROGERS W J, XIA X C, RAUPP W J. Catalogue of gene symbols for wheat: 2019 supplement//Raupp W J. ed. Annual Wheat Newsletter. Manhattan, USA, 2019, 65: 98-113.

[196] BURT C, NICHOLSON P. Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theoretical and Applied Genetics, 2011, 123(8): 1387-1400.

[197] MURRAY T D, DE LA PENA R C, YILDIRIM A, JONES S S. A new source of resistance to Pseuudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breeding, 1994, 113 (4): 281-286.

[198] ZHANG Q, LI Q, WANG X, WANG H, LANG S, WANG Y, WANG S, CHEN P, LIU D. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS⋅4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145(3): 317-320.

[199] Friebe B, Qi L L, Wilson D L, CHANG Z J, SEIFERS D L, MARTIN T J, KRITZ A K, GILL B S. Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virusand Triticum mosaic virus. Crop Science, 2009, 49(4): 1221-1226.

[200] DANILOVA T V, ZHANG G, LIU W, FRIEBE B, GILL B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theoretical and Applied Genetics, 2017, 130(3): 549-556.

[201] XIN Z, XU H, CHEN X, LIN Z, ZHOU G, QIAN Y, CHEN Z, LARKIN P J, BANKS P, APPELS R, GLARKE B, BRETTELL R I S. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotecnology. Science in China (Series B), 1991, 21(9): 36-42.

[202] AYALA-NAVARRETE L, THOMPSON N, OHM H, ANDERSON J. Molecular markers show a complex mosaic pattern of wheat- Thinopyrum intermedium translocations carrying resistance to YDV. Theoretical and Applied Genetics, 2010, 121(5): 961-970.

[203] KOZUB N A, SOZINOV I A, KARELOV A V, BLUME YA B, SOZINOV A A. Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes. Cytology and Genetics, 2017, 51(2): 117-129.

[204] 陈静, 任正隆. 四川栽培小麦新品种(系)中的1RS/1BL染色体易位.四川大学学报(自然科学版), 1996, 33(增刊): 16-20.

CHEN J, REN Z L. 1RS/1BL Chromosome translocation in new cultivated wheat varieties (lines) in Sichuan Province. Journal of Sichuan University (Natural Science Edition). 1996, 33(Suppl.): 16-20. (in Chinese)

[205] 杨足君, 傅体华, 任正隆. 外源抗白粉病基因向四川小麦的转移与利用. 四川大学学报(自然科学版), 1998, 35: 46-49.

YANG Z J, FU T H, REN Z L. Transfer and utilization of exogenous powdery mildew resistance genes to Sichuan wheat. Journal of Sichuan University (Natural Science Edition), 1998, 35: 46-49. (in Chinese)

[206] HAO C Y, DONG Y, WANG L, YOU G, ZHANG H, GE H, JIA J, ZHANG X. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chinese Science Bulletin, 2008, 53(10): 1518-1526.

[207] TAHIR R, BUX H, KAZI A G, RASHEED A, NAPAR A A, AJMAL S U, MUJEEB-KAZI A. Evaluation of Pakistani wheat germplasm for T1BL.1RS chromosome translocation. Journal of Agricultural Science and Technology, 2014, 16: 421-432.

[208] LANDJEVA S, KORZUM V, GANEVA G. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925-2003 using microsatellites. Genetic Resources and Crop Evolution, 2006, 53: 1605-1614.

[209] PURNHAUSER L, BONA L, LANG L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and the Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica, 2011, 179: 287-295.

[210] SCHLEGEL R. Current list of wheats with rye and alien introgression. 2011, 5/8: 1-14. http://www.rye-gene-map.de/rye-introgression/index. html.

[211] LUKASZEWSKI A J, GUSTAFSON J P. Translocations and modifications of chromosomes in triticale×wheat hybrids. Theoretical and Applied Genetics, 1983, 64(3): 239.

[212] VILLAREAL R, RAJARAM S, MUJEEB‐KAZI A, DEL TORO E. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breeding, 1991, 106(1): 77-81.

[213] MOSTNY I I, SUDARCHUK L V, CHEBOTAR S V. Molecular- genetic evidence of wheat-rye chromosome substitution and translocation in wheat cultivars and introgression stocks. Collected Scientific Papers of PBGI-NCSCI, Odesa (Ukraine), 2015, 25(65): 50-60.

[214] GRAYBOSCH R, BAI G, AMAND P S, SARATH G. Persistence of rye (Secale cereale L.) chromosome arm 1RS in wheat (Triticum aestivum L.) breeding programs of the Great Plains of North America. Genetic Resources and Crop Evolution, 2019, 66: 941-950.

[215] KOZUB N O, SOZINOV I O, KOLIUCHYĬ V T, VLASENKO V A, SOZINOV O O. Identification of 1AL/1RS translocation in winter common wheat varieties of Ukrainian breeding. Tsitologiyai Genetika, 2005, 39(4): 20-24.

[216] WENG Y, AZHAGUVEL P, DEVKOTA R N, RUDD J C. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breeding, 2010, 126(5): 482-486.

[217] HSAMSL K, CERMEO M C, FRIEBE B, ZELLER F J. Transfer of Amigo wheat powdery mildew resistance gene Pm17 from T1AL·1RS to the T1BL·1RS wheat-rye translocated chromosome. Heredity, 1995, 74(5): 497-501.

[218] 向齐君, 盛宝钦, 段霞瑜, 周益林. 小麦白粉病抗源材料的有效抗病基因分析. 华北农学报, 1996, 11(4): 43-47.

XIANG Q J, SHENG B Q, DUAN X Y, ZHOU Y L. Analysis of effective wheat powdery mildew resistance genes of wheat resistance lines. Acta Agriculturae Boreali-Sinica, 1996, 11(4): 43-47. (in Chinese)

[219] YANG Z J, REN Z L. Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Löve genes for adult plant resistance to stripe rust in wheat background. Genetic Resources and Crop Evolution, 2001, 48(2): 183-187.

[220] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018, 44(5): 6-17.

HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 6-17. (in Chinese)

[221] QI W, TANG Y, ZHU W, LI D, DIAO C, XU L, ZENG J, WANG Y, FAN X, SHA L. Molecular cytogenetic characterization of a new wheat-rye 1BL/1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta, 2016, 244(2): 405-416.

[222] 晏本菊, 张怀琼, 任正隆. 黑麦碱基因(Sec-1)表达缺失的1RS/ 1BL易位系的鉴定. 遗传, 2005, 27(4): 513-517.

YAN B J, ZHANG H Q, REN Z L. Molecular cytogenetic identification of a new 1RS/1BL translocation line with secalin absence. Hereditas (Beijing), 2005, 27(4): 513-517. (in Chinese)

[223] ANUGRAHWATI D R, SHEPHERD K W, VERLIN D C, ZHANG P, MIRZAGHADERI G, WALKER E, FRANCKI M G, DUNDAS I S. Isolation of wheat-rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome, 2008, 51(51): 341-349.

[224]钱鹏, 刘汉梅, 陈洋尔, 罗培高, 唐宗祥, 杜小刚, 任正隆, 张怀渝. 一个黑麦碱基因Sec-1表达缺失的抗白粉病新材料的鉴定和抗源分析. 麦类作物学报, 2014, 34(7): 936-943.

QIAN P, LIU H M, CHEN Y E, LUO P G, TANG Z X, DU X G, REN Z L, ZHANG H Y. Molecular cytogenetic identification of novel powdery mildew resistance and 1BL/1RS translocation line with secalin absence. Journal of Triticeae Crops, 2014, 34(7): 936-943. (in Chinese)

[225] GRAYBOSCH R, PETERSON C, BAENZIGER P, BALTENSPERGER D, NELSON L, JIN Y, KOLMER J, SEABOURN B, FRENCH R, HEI G, MARTIN T, BEECHER B, SCHWARZACHER T, HESLOP-HARRISON P. Registration of ‘Mace’ hard red winter wheat. Journal of Plant Registrations, 2009, 3: 51-56.

[226] CRUZ C D, PETERSON G L, BOCKUS W W, KANKANALA P, DUBCOVSKY J, JORDAN K W, AKHUNOV E, CHUMLEY F, BALDELOMAR F D, VALENT B. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Science, 2016, 56(3): 990-1000.

[227] MCINTOSH R, WEILLINGS C, PARK R. Wheat rusts: an Atlas of Resistance Genes. Melbourne, Australia: CSIRO Press, 1995: 1-200.

[228] WELLINGS C, BARIANA H, BANSAL U, PARK R. Expected responses of Australian wheat and Triticale varieties to the cereal rust diseases in 2012. Cereal Rust Report, 2012, 101(1): 1-5.

[229] ROBERT O, ABELARD C, DEDRYVER F. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Molecular Breeding, 1999, 5(2): 167-175.

[230] 佳瑞, 马占鸿. 我国主栽小麦品种抗条锈病基因的分子检测//中国植物病理学会2018年学术年会论文集. 2018.

JIA R, MA Z H. Molecular detection of stripe rust resistance gene in main wheat cultivars of China//Proceedings of the 2018 Annual Meeting of the Chinese Society of Plant Pathology. 2018. (in Chinese)

[231] 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因Yr17的新SCAR标记的建立与应用. 麦类作物学报, 2010, 30(1): 11-16.

JIA J Q, LEI M P, LIU C, LI G R, YANG Z J. Exploitation and application of a new SCAR marker linked to stripe rust resistance gene Yr17 in wheat. Journal of Triticeae Crops, 2010, 30(1): 11-16. (in Chinese)

[232]薛文波, 许鑫, 穆京妹, 王琪琳, 吴建辉, 黄丽丽, 康振生, 韩德俊. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8): 1054-1060.

XUE W B, XU X, MU J M, WANG Q L, WU J H, HUANG L L, KANG Z S, HAN D J. Evaluation of stripe rust resistance and genes in Chinese elite wheat varieties. Journal of Triticeae Crops, 2014, 34(8): 1054-1060. (in Chinese)

[233] 李峰奇, 韩德俊, 魏国荣, 曾庆东, 康振生. 黄淮麦区小麦品种Lr37-Yr17-Sr38基因簇的分子检测. 西北农林科技大学学报(自然科学版), 2009, 37(3):151-158.

LI F Q, HAN D J, WEI G Q, ZENG Q D, KANG Z S. Identification of Lr37-Yr17-Sr38 in wheat cultivars of Huanghuai wheat region suing molecular markers. Journal of Northwest A & F University (Natural Science Edition), 2009, 37(3): 151-158. (in Chinese)

[234] 张林, 张梦雅, 高颖, 许换平, 刘成, 刘建军, 闫红飞, 刘大群. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(4): 676-684.

ZHANG L, ZHANG M Y, GAO Y, XU H P, LIU C, LIU J J, YAN H F, LIU D Q. Analysis of leaf rust resistance in 12 main wheat cultivars (lines) in Shandong. Journal of Plant Genetic Resources, 2017, 18(4): 676-684. (in Chinese)

[235] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002.

LI Z Q, ZENG S M. Wheat rusts in China. Beijing: China Agriculture Press, 2002. (in Chinese)

[236] BAYLES R A, FLATH K, HOVMOLLER M S, VALLAVIEILLE- POPE C. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie, 2000, 20(7): 805-811.

[237] 李振声, 陈潄阳, 刘冠军, 李容玲. 小麦与偃麦草远缘杂交的研究. 科学通报, 1962, 7(4): 40-42.

LI Z S, CHEN S Y, LIU G J, LI R L. A study on the distant cross of wheat and agropyron. Chinese Science Bulletin, 1962, 7(4): 40-42. (in Chinese)

[238] 辛志勇, 徐惠君, 陈孝, 林志珊. 应用生物技术向小麦导入黄矮病抗性的研究. 中国科学, 1991, 1: 36-42.

XIN Z Y, XU H J, CHEN X, LIN Z S. Study on introducing resistance to yellow dwarf disease into wheat by biotechnology. Chinese Science, 1991, 1: 36-42. (in Chinese)

[239] HAN F, LIU B, FEDAK G, LIU Z. Chromosomal variation, constitution of five partial amphiploids of wheat-Thinopyrum intermedium detected by GISH, seed storage protein marker and multicolor GISH. Theoretical and Applied Genetics, 2004, 109: 1070-1076.

[240] 庄丽芳, 亓增军, 陈佩度, 冯祎高, 刘大均. 普通小麦与百萨偃麦草染色体易位系的选育与鉴定. 中国农业科学, 2003, 36(12): 1432-1436.

ZHUANG L F, QI Z J, CHEN P D, FENG W G, LIU D J. Development and identification of Triticum aestivum L.-Thinopyrum bessarabicum Love chromosome translocations. Scientica Agricultura Sinica, 2003, 36(12): 1432-1436. (in Chinese)

[241] 王长有, 吉万全, 薛秀庄, 王秋英. 小麦-中间偃麦草异附加系条锈病抗性的研究. 西北植物学报, 1999, 19(6): 54-58.

WANG C Y, JI W Q, XUE X Z, WANG Q Y. Studies on yellow rust resistance of T. aestivum-Th. intermedium alien disomic addition line. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(6): 54-58. (in Chinese)

[242] 王洪刚, 朱军, 刘树兵. 利用细胞学和RAPD技术鉴定抗病小偃麦易位系. 作物学报, 2001, 27(6): 886-890.

WANG H G, ZHU J, LIU S B. Identification of tritelytrigia translocation line with disease resistance by cytology and RAPD analysis. Acta Agronomica Sinica, 2001, 27(6): 886-890. (in Chinese)

[243] YANG Z J, LI G R, CHANG Z J, ZHOU J P, REN Z L. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006, 149(1/2): 11-17.

[244] ZHANG X, SHEN X, HAO Y, CAI J, OHM H W, KONG L. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011, 122(2): 263-270.

[245] 任正隆. 黑麦种质导入小麦及其在小麦育种中的利用方式. 中国农业科学, 1991, 24(3): 18-25.

REN Z L. Introduction of rye chromatin into wheat and its breeding behavior. Scientia Agricultura Sinica, 1991, 24(3): 18-25. (in Chinese)

[246] 刘登才, 郑有良, 魏育明, 兰秀锦, 颜泽洪, 周永红. 将秦岭黑麦遗传物质导入普通小麦的研究. 四川农业大学学报, 2002, 20(2): 75-77.

LIU D C, ZHENG Y L, WEI Y M, LAN X J, YAN Z H, ZHOU Y H. Transferring the genetic base of qinling rye into wheat. Journal of Sichuan Agricultural University, 2002, 20(2): 75-77. (in Chinese)

[247] AN D G, LI L H, LI J M, LI H J, ZHU Y G. Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. Journal of Integrative Plant Biology, 2006, 48(7): 838-847.

[248] 李爱霞, 亓增军, 裴自友, 庄丽芳, 冯祎高, 王秀娥. 普通小麦辉县红-荆州黑麦异染色体系的选育及其梭条花叶病抗性鉴定. 作物学报, 2007, 33(4): 639-645.

LI A X, QI Z J, PEI Z Y, ZHUANG L F, FENG W G, WANG X E. Development and WSSMV resistance identification of wheat landrace Huixianhong alien chromosome lines derived from rye cultivar Jingzhouheimai. Atca Agronomica Sinica, 2007, 33(4): 639-645. (in Chinese)

[249] LIU C, YANG Z J, LI G R, ZENG Z X, ZHANG Y, ZHOU J P, LIU Z H, REN Z L. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159(1/2): 249-258.

[250] 唐宗祥, 符书兰, 任正隆, 张怀琼. 小麦-黑麦双二倍体形成过程中微卫星序列的变化. 麦类作物学报, 2008, 28(2): 197-201.

TANG Z X, FU S L, REN Z L, ZHANG H Q. Microsatellite sequence variation of wheat-rye amphiploids detected by SSR markers. Journal of Triticeae Crops, 2008, 28(2): 197-201. (in Chinese)

[251] 吴金华, 王新茹, 王长有, 王秋英, 吉万全. 含抗白粉病新基因普通小麦-黑麦1R二体异附加系的遗传学鉴定. 农业生物技术学报, 2009, 17(1): 153-158.

WU J H, WANG X R, WANG C Y, WANG Q Y, JI W Q. Genetic identification of wheat-rye 1R alien disomic additional line with novel resistant gene to powdery mildew. Journal of Agricultural Biotechnology, 2009, 17(1): 153-158. (in Chinese)

[252] FU S, CHEN L, WANG Y, LI M, YANG Z, QIU L, YAN B, REN Z, TANG Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Scientific Reports, 2015, 5: 10552.

[253] YANG Z J, LIU C, FENG J, LI G R, ZHOU J P, DENG K J, REN Z L. Studies on genome relationship and species‐specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas, 2006, 143(2): 47-54.

[254] HAN H, BAI L, SU J, ZHANG J, SONG L, GAO A, YANG X, LI X, LIU W, LI L. Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PloS One, 2014, 9(3): e91066.

[255] YE X, LU Y, LIU W, CHEN G, HAN H, ZHANG J, YANG X, LI X, GAO A, LI L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theoretical and Applied Genetics, 2015, 128(5): 797-811.

[256] 李家洋. 李振声论文选集, 北京: 科学出版社, 2007.

LI J Y. Selected papers of Li Zhensheng. Beijing: Science Press, 2007. (in Chinese)

[257] 王义芹, 谭伟, 杨兴洪, 李滨, 童依平, 李振声. 不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究. 西北植物学报, 2007, 27(12): 2484-2490.

WANG Y Q, TAN W, YANG X H, LI B, TONG Y P, LI Z S. Photosynthetic characteristics and the activities of antioxidative enzymes in flag leaves of wheat cultivars released in different period. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(12): 2484-2490. (in Chinese)

[258] 李万隆, 李振声. 小麦品种小偃6号染色体结构变异的细胞学研究. 遗传学报, 1990, 17(6): 430-437.

LI W L, LI Z S. A cytological study of chromosomal structure changes in a common wheat variety, Xiaoyan No. 6. Acta Genetica Sinica, 1990, 17(6): 430-437. (in Chinese)

[259] 任志龙, 吉万全, 赵会贤, 薛秀庄. 面包专用粉小麦新品种陕麦150的选育与产业化开发. 麦类作物学报, 2000, 20(1): 74-77.

REN Z L, JI W Q, ZHAO H X, XUE X Z. Development and industrial exploitation of a new bread wheat variety Shaanmai 150. Journal of Triceae Crops, 2000, 20(1): 74-77. (in Chinese)

[260] 刘新伦, 王超, 牛丽华, 刘志立, 张录德, 陈春环, 张荣琦, 张宏, 王长有, 王亚娟, 田增荣, 吉万全. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017, 50(20): 3908-3922.

LIU X L, WANG C, NIU L H, LIU Z L, ZHANG L D, CHEN C H, ZHANG R Q, ZHANG H, WANG C Y, WANG Y J, TIAN Z R, JI W Q. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid. Scientia Agricultura Sinica, 2017, 50(20): 3908-3922. (in Chinese)

[261] 张增艳, 辛志勇. 抗黄矮病小麦生物技术育种研究进展. 作物杂志, 2005, 5: 4-7.

ZHANG Z Y, XIN Z Y. Advances in biotechnology breeding of wheat resistant to yellow dwarf disease. Crops, 2005, 5: 4-7. (in Chinese)

[262] 范绍强, 谢咸升, 郑王义, 李峰. 小麦抗黄矮病遗传育种研究进展. 中国生态农业学报, 2008, 16(1): 241-244.

FAN S Q, XIE X S, ZHENG W Y, LI F. Advances in barley yellow dwarf virus resistance heredity in wheat breeding. Chinese Journal of Eco-Agriculture, 2008, 16(1): 241-244. (in Chinese)

[263] 孙善澄, 孙玉, 袁文业, 阎文泽, 裴自友, 张美荣, 白云凤. 优质黑粒小麦76的选育及品质分析. 作物学报, 1999, 25(1): 50-54.

SUN S C, SUN Y, YUAN W Y, YAN W Z, PEI Z Y, ZHANG M R, BAI Y F. Breeding and qualitative analysis for black grain wheat 76 of superior quality. Acta Agronomica Sinica, 1999, 25(1): 50-54. (in Chinese)

[264] 孙玉, 孙善澄, 刘少翔, 闫贵云, 郭庆. 高营养饲粮兼用全黑小麦的选育. 山西农业科学, 2009, 37(12): 3-6.

SUN Y, SUN S D, LIU S X, YAN G Y, GUO Q. Selection of high nutritive feed-food dual-purposed all black wheat. Journal of Shanxi Agricultural Sciences, 2009, 37(12): 3-6. (in Chinese)

[265] 齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞渝, 周益林. 小麦白粉病新抗源-基因Pm21. 作物学报, 1995, 21(3): 257-262.

QI L L, CHEN P D, LIU D J, ZHOU B, ZHANG S Z, SHENG B Q, XIANG Q J, DUAN X Y, ZHOU Y L. The gene Pm21-a new source for resistance to wheat powdery mildew. Acta Agronomica Sinica, 1995, 21(3): 257-262. (in Chinese)

[266] 陈佩度, 张守忠, 王秀娥, 王苏玲, 周波, 冯祎高, 刘大钧. 抗白粉病高产小麦新品种南农9918. 南京农业大学学报, 2002, 25(4): 105-106.

CHEN P D, ZHANG S Z, WANG X E, WANG S L, ZHOU B, FENG W G, LIU D J. New wheat variety Nannong 9918 with high yield and powdery mildew resistance. Journal of Nanjing Agricultural University, 2002, 25(4): 105-106. (in Chinese)

[267] 李桂萍, 陈佩度, 张守忠, 赵和. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12(5): 744-749.

LI G P, CHEN P D, ZHANG S Z, ZHAO H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. Journal of Plant Genetic Resources, 2011, 12(5): 744-749. (in Chinese)

[268] 任天恒, 陈放, 张怀琼, 晏本菊, 任正隆. 1RS.1BL易位在川农号系列小麦新品种选育中的作用. 麦类作物学报, 2011, 31(3): 430-436.

REN T H, CHEN F, ZHANG H Q, YAN B J, REN Z L. Application of 1RS.1BL translocation in the breeding of “Chuannong” series wheat cultivars. Journal of Triceae Crops, 2011, 31(3): 430-436. (in Chinese)

[269] ZHANG P L, HAO Y L, YANG J, LUO Y, REN Z L. Analysis of the relationship between agronomic traits and disease resistance of wheat varieties-Chuannong. Chinese Seed, 2012, 3(1): 12-15.

[270] 吉万全, 王秋英, 王长有, 任志龙, 张宏, 蔡东明, 王亚娟, 薛秀庄. 优质抗病丰产小麦新品种-远丰175. 麦类作物学报, 2006, 26(4): 175.

JI W Q, WANG Q Y, WANG C Y, REN Z L, ZHANG H, CAI D M, WANG Y J, XUE X Z. High quality, disease resistant and high yielding wheat variety-Yuanfeng 175. Journal of Triceae Crops, 2006, 26(4): 175. (in Chinese)

[271] GUO J, HE F, CAI J J, WANG H W, LI A F, WANG H G, KONG L R. Molecular and cytological comparisons of chromosomes 7el1, 7el2, 7Ee, and 7Ei derived from Thinopyrum. Cytogenetic & Genome Research, 2015, 145(1): 68-74.

[272] HAN F, LI J. Morphology and cytogenetics of intergeneric hybrids of crossing Triticum durum and T. timopheevi with tetraplloid Elytrigia elongata. Journal of Genetics and Genomics, 1993, 20(5): 44-49.

[273] FU S, LV Z, QI B, GUO X, LI J, LIU B, HAN F. Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight. Journal of Genetics and Genomics, 2012, 39(2): 103-110.

[274] WAN A, ZHAO Z, CHEN X, HE Z, JIN S, JIA Q, YAO G, WANG B, LI G, BI Y, YUAN Z. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 2004, 88(8): 896-904.

[275] 何中虎, 夏先春, 陈万权. 小麦对秆锈菌新小种Ug99的抗性研究进展. 麦类作物学报, 2008, 28(1): 170-173.

HE Z H, XIA X C, CHEN W Q. Breeding for resistance to new race Ug99 of stem rust pathogen. Journal of Triticeae Crops, 2008, 28(1): 170-173. (in Chinese)

[276] ZHANG H, GUAN H, LI J, XIE C, DUAN X, ZHOU Y, YANG T, SUN Q, LIU Z. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2010, 121: 1613-1621.

[277] NASUDA S, FRIEBE B, BUSCH W, KYNAST R G , Gill B S. Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theoretical and Applied Genetics, 1998, 96(6/7):780-785.

[278] MARAIS G F, BADENHORST P E, EKSTEEN A, PRETORIUS Z A. Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica, 2010, 171(1): 15-22.

[279] 王海燕, 赵仁慧, 袁春霞, 张守忠, 肖进, 王秀娥. 小麦-簇毛麦T4DL·4VS易位染色体对小麦农艺性状的影响. 麦类作物学报, 2012, 32(6): 1032-1036.

WANG H Y, ZHAO R H, YUAN C X, ZHANG S Z, XIAO J, WANG X E. Effects of the Triticum aestivum-Haynaldia villosa T4DL·4VS translocation chromosome on the agronomic important traits in different backgrounds. Journal of Triticeae Crops, 2012, 32(6): 1032-1036. (in Chinese)

[280] 郭军, 李家前, 李豪圣, 王灿国, 刘爱峰, 程敦公, 曹新有, 刘建军, 赵振东, 宋健民. 高大山羊草Pm13染色体片段对小麦农艺和产量性状的影响. 麦类作物学报, 2019, 34):13-18.

GUO J, LI J Q, LI H S, WANG C G, LIU A F, CHENG D G, CAO X Y, LIU J J, ZHAO Z D, SONG J M. Effect of Aegilops longissima chromatin carrying Pm13 on wheat agronomic and yield-related traits. Journal of Triticeae Crops, 2019, 39(4): 13-18. (in Chinese).

[281] KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G, CHANG W, JAASKELAINEN M, SCHUDOMA C, PAULIN L, LAINE P, BARIANA H, SELA H, SALEEM K, SORENSEN C, HOVMOLLER M, DISTELFELD A, CHALHOUB B, DUBCOVSKY J, KOROL A, SCHULMAN A, FAHIMA T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase- pseudokinase family. Nature Communications, 2018, 9: 3735.

[282] ZHANG C, HANG L, ZHANG H, HAO Q, LYU B, WANG M, EPSTEIN L, LIU M, KOU C, QI J, CHENG F, LI M, GAO G, NI F, ZHANG L, HAO M, WANG J, CHEN X, LUO M, ZHENG Y, WU J, LIU D, FU D. An ancestral NB-LRR with duplicated 3’UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, DOI:10.1038/s41467-019-11872-9.

[283] FU D, UAUY C, DISTELFELD A, BLECHL A, EPSTEIN L, CHEN X, SELA H, FAHIMA T, DUBCOVSKY J. A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323(5919): 1357-1360.

[284] HUANG L, BROOKS S A, LI W, FELLERS J, TRICK H, GILL B. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003, 164(2): 655-664.

[285] ZHANG W, CHEN S, ABATE Z, NIRMALA J, ROUSE M, DUBCOVSKY J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): E9483-E9492.

[286] CHEN S, ZHANG W, BOLUS S, ROUSE M, DUBCOVSKY J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLOS Genetics, 2018, 14(4): e1007287.

[287] SALCEDO A, RUTTER W, WANG S, AKHUNOVA A, BOLUS S, CHAO S, ANDERSON N, DE SOTO M, ROUSE M, SZABO L, BOWDEN R, DUBCOVSKY J, AKHUNOV E. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science, 2017, 358(6370): 1604-1606.

[288] CHEN S, ROUSE M, ZHANG W, ZHANG X, GUO Y, BRIGGS J, DUBCOVSKY J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytologist, 2019, DOI: 10.1111/nph.16169

[289] HE H, ZHU S, ZHAO R, JIANG Z, JI Y, JI J, QIU D, LI H, BIE T. Pm21, encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease. Molecular Plant, 2018, 11(6): 879-882.

[290] XING L, HU P, LIU J, WITEK K, ZHOU S, XU J, ZHOU W, GAO L, HUANG Z, ZHANG R, WANG X, CHEN P, WANG H, JONES J, KARAFIATOVA M, VRANA J, BARTOS J, DOLEZEL J, TIAN Y, WU Y, CAO A. Pm21 from Haynaldia villosa encodes a CC-NBS- LRR that confers powdery mildew resistance in wheat. Molecular Plant, 2018, 11(6): 874-878.

Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization

LIU Cheng, HAN Ran, WANG XiaoLu, GONG WenPing, CHENG DunGong, CAO XinYou, LIU AiFeng, LI HaoSheng, LIU JianJun

(Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang-Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan 250100)

Abstract: Wheat alien species are vast reservoir of diversity for disease and pest resistance as well as stress tolerance, which are excellent gene sources for wheat breeding. Through wide hybridization, the genes of alien species could be transferred to wheat to create wheat-alien chromosome lines such as amphiploids or partial amphiploids, additions, substitutions and translocation lines. These genetic stocks could be utilized to study chromosome behavior and genome evolution, mapping genes, and diversifying the genetic basis of wheat for diseases and pest resistance, as well as yield and quality improvement. In order to understand the progress of wheat wide hybridization and useful gene transfer from alien species to wheat, in this paper, the classification of the tribe Triticeae, the definition and significance of wheat wide hybridization, alien transfers progress from species belonging to genera Aegilops, Secale, Thinopyrum, Dasypyrum, Agropyron, Hordeum, Elymus, Leymus, Psathyrostachys and Eremopyrum to wheat have been summarized and discussed. To date, the official designated genes originated from wheat alien species include 17 stripe rust resistance genes, 35 leaf rust resistance gens, 30 stem rust resistance genes, 41 powdery mildew resistance genes, 3 Fusarium head blight-resistance genes, one wheat blast resistance gene, one Septoria tritici blotch resistance genes, one Septoria nodorum blotch resistance gene, 4 tan spot resistance genes, 2 eyespot resistance genes, one wheat spindle streak mosaic virus resistance gene, 2 wheat streak mosaic virus resistance genes and 2 cereal yellow dwarf resistance genes. Names and the chromosomal locations of these disease resistance genes were inducted. Moreover, the utilization of these genes in wheat breeding has also been reviewed and summarized. In the history of world wheat breeding, disease resistant germplasms such as wheat-rye 1RS·1BL translocation, 1RS·1AL translocation and wheat-Aegilops ventricosa 2NS/2AS translocation have made outstanding contributions. However, this only benefited from the utilization of a few disease resistant genes. Compared to the number of the designated genes, relatively few disease-resistant genes have been used in wheat breeding. In this paper, the limiting factors for the underutilization are discussed. Suggestions on how to use these disease-resistant genes in the future are put forward. Meanwhile, the cloned disease-resistant genes from wheat alien species are listed. The methods of cloning these genes and the possible research hotspots in the future are also analyzed. It is believed that the development and application of wheat-wild species translocation lines without genetic drag may be an important driving force for material innovation and variety breeding in the future.

Key words: wheat; wild hybridization; chromosome line; disease resistance gene; derived varieties

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

doi: 10.3864/j.issn.0578-1752.2020.07.001

收稿日期:2019-07-31;

接受日期:2019-11-14

基金项目:泰山学者工程专项经费(tsqn201812123)、山东省良种工程(2019LZGC016)、山东省自然科学基金(ZR2017MC004)

联系方式:刘成,E-mail:lch6688407@163.com

(责任编辑 李莉)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2025-1-9 10:11

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表