奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 247|回复: 0

下预酶解-滚筒干燥加工工艺对全麦片品质的影响

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60167
发表于 2021-10-14 13:05:28 | 显示全部楼层 |阅读模式
扫码加微信
下预酶解-滚筒干燥加工工艺对全麦片品质的影响
余可1,2,刘磊2,张瑞芬2,池建伟2,贾栩超2,张名位1,2

(1长江大学生命科学学院,湖北荆州 434000;2广东省农业科学院蚕业与农产品加工研究所/农业农村部功能食品重点实验室/ 广东省农产品加工重点实验室,广州 510610)

摘要:【目的】探讨预酶解-滚筒干燥处理对全麦片品质特性的影响,为高品质全麦片的加工提供理论依据。【方法】以小麦全粉为原料,采用α-淀粉酶、纤维素酶及其复合酶进行预酶解-滚筒干燥制备全麦片:未经预酶解处理直接滚筒干燥全麦片(drum-dried whole wheat groats,DWG),α-淀粉酶-滚筒干燥速食全麦片(drum-dried whole wheat groats with α-Amylase,DWGA),纤维素酶-滚筒干燥速食全麦片(drum-dried whole wheat groats with cellulase,DWGC),α-淀粉酶-纤维素酶-滚筒干燥速食全麦片(drum-dried whole wheat groats with α-Amylase and cellulase,DWGAC),以及以小麦精粉为原材料制备直接滚筒干燥精麦片(drum-dried refined wheat groats,DRG),分别测定其复水性速率、结块率、水溶性指数、吸水性指数、糊化度、黏度、色度,淀粉、还原糖、植酸含量、淀粉和蛋白质消化特性等指标,比较并分析预酶解-滚筒干燥对全麦片品质特性的影响。【结果】预酶解-滚筒干燥处理能显著改善全麦片的冲调性,其中DWG样品复水速率最低,DWGAC复水速率最高,与对照样品DWG相比,DWGA、DWGC、DWGAC的结块率显著降低。预酶解-滚筒干燥处理显著提高了全麦片的溶解性,其中DWGA、DWGC、DWGAC相比于DWG水溶性指数分别提高了4.98、2.07和5.04倍。同时,预酶解-滚筒干燥处理使全麦片的淀粉、植酸含量显著降低(P<0.05),还原糖含量和糊化度显著升高(P<0.05),适当降低了全麦片的色度。此外,预酶解-滚筒干燥处理使全麦片中快消化淀粉比例显著提高,快消化淀粉含量分别比对照增长了22.34%、34.84%和46.59%,其中DWGAC快消化淀粉含量最高;蛋白质体外消化速率加快,蛋白质体外消化率分别提高了0.33、0.25、0.26倍,消化率升高。【结论】预酶解-滚筒干燥处理提高了全麦片的冲调分散性,降低了结块率和黏度,提高了淀粉和蛋白质体外消化性能,对全麦片品质有提升作用。

关键词:全麦片;预酶解-滚筒干燥;营养消化特性;品质特性

0 引言
【研究意义】小麦是世界上种植最广泛的粮食作物之一,约1/3的居民以小麦作为主要粮食[1-2]。小麦主要由胚芽、胚乳和麸皮组成,其含有丰富的淀粉、蛋白质、脂质、膳食纤维和矿物质[3]。在小麦精粉的加工过程中,一般会将胚芽和麸皮作为副产品除去[4]。与小麦精粉相比,全麦粉含有更高水平的维生素、矿物质、膳食纤维、天然抗氧化剂和其他活性物质[5-8],如类胡萝卜素、黄酮类和酚酸等。现代流行病学研究表明,长期摄入全麦粉能预防心血管疾病、肥胖症、II型糖尿病和癌症等[9]慢性疾病的发生。麦片是以小麦粉为原材料加工而成的一种食品,其主要的加工技术有4种,包括滚筒干燥制片、蒸汽熟化后辊压制片、膨化旋切制片和调制制粒熟化后压片[10],其中滚筒干燥技术因其具有粉尘少、占地面积少、干燥速率大等优点,已经广泛用于营养麦片的生产加工中[11-12]。而全麦片与麦片的不同之处在于全麦片使用了全麦粉为原材料进行加工,随着人们生活节奏的加快以及对营养健康的追求,全麦片作为一种便捷的营养食品,越来越受到消费者的重视与青睐。【前人研究进展】目前,国内外已有大量关于滚筒干燥加工工艺对谷物营养片理化特性影响的研究。Aristizábal等[13]以小麦精粉为原料比较分析了不同加工工艺对麦片理化特性的影响,发现相比于挤压膨化加工处理,滚筒干燥加工处理能显著增加麦片溶解度和均匀性。SUPPRUNG等[14]研究了不同工艺参数对滚筒干燥大米片理化特性的影响,发现高的物料浓度、较低的干燥时间能显著增加其水分含量和水溶性指数,降低糊化度和吸水性指数。YAMATO等[15]研究发现滚筒干燥芒果片中添加玉米淀粉和麦芽糖糊精能显著改善芒果片的色度。此外,也有研究报道了滚筒干燥加工工艺对谷物食品消化特性的影响。FELKER等[16]研究发现与喷射蒸煮工艺相比,滚筒干燥处理能显著增加黑豆蛋白质的体外消化率。崔雅楠等[17]研究发现与滚筒干燥处理相比,蒸煮处理后燕麦、黑麦的淀粉消化率显著提高。BJÖRCK等[18]研究了不同加工工艺对麦片消化特性的影响,发现煮沸后再进行滚筒干燥处理的麦片在体外消化中的淀粉消化率显著高于直接滚筒干燥产品。如何提高滚筒干燥加工制备食品的消化特性仍有待深入研究。【本研究切入点】尽管市场上许多精麦片都是采用滚筒干燥工艺加工而成,但目前关于麦片的研究报道主要集中在熟化压片制备麦片的工艺方面[10,19-20],关于滚筒干燥技术在麦片加工中应用的研究还比较少,以全麦粉为原料加工制备麦片的研究尚未见报道。虽然与精麦粉相比,全麦粉营养成分更丰富,但由于其富含膳食纤维等成分,在传统麦片的加工工艺条件下,产品的消化性能和冲调特性均难以满足消费者的需求,因此,需要对其加工工艺进行改进。【拟解决的关键问题】本研究以全麦粉为原材料,以预酶解-滚筒干燥制备的全麦片作为试验组,未经预酶解处理直接滚筒干燥制备的全麦片为对照组,通过测定吸水性指数WAI,水溶性指数WSI,复水速率,结块率,糊化度,黏度,色度,淀粉、还原糖、植酸含量等指标,并对淀粉和蛋白质进行体外模拟消化,比较分析预酶解-滚筒干燥对全麦片冲调性、营养消化性和糊化特性等品质的影响。

1 材料与方法
试验于2018—2019年在广东省农业科学院蚕业与农产品加工研究所进行。

1.1 材料与试剂
小麦品种为红春小麦全麦粉(蛋白质11 g/100 g,脂肪1.2 g/100 g,淀粉67.3 g/100 g,膳食纤维12.2 g/100 g),中粮集团;高温α-淀粉酶(酶活力为10 000 U∙g-1)、纤维素酶(酶活力400 U∙mg-1),诺维信(中国)生物技术有限公司;胃蛋白酶(250 U∙mg-1)、猪胰α-淀粉酶(50 U∙mg-1),美国Sigma-Aldrich公司;糖化酶(100 000 U∙g-1),江苏锐阳生物科技有限公司;高峰氏淀粉酶(4 000 U∙g-1),上海源叶生物科技有限公司;胰蛋白酶(250 U∙mg-1),广州齐云生物技术有限公司;其他试剂均为国产分析纯,国药集团化学试剂有限公司。

1.2 仪器与设备
GT-Ф800×600型滚筒刮板干燥机,常州市金陵干燥设备有限公司;LX100-23 型研磨机,曲阜鸿涛机械有限公司;12型磨粉机,长沙旭众食品机械有限公司;UV-1240型紫外可见分光光度计,日本岛津分析仪器公司;K-8400型蛋白质分析仪,瑞典FOSS公司;SOX416型脂肪分析仪,德国Gerhardt公司;L-8900型全自动氨基酸分析仪,日本HITACHIL公司;RVA-4500快速黏度分析仪(rapid viscosity analyzer,RVA),瑞典波通仪器公司。

1.3 试验方法
试验分为5组:(1)滚筒干燥速食精制麦片Drum- dried Refined wheat Groats(DRG),(2)滚筒干燥速食全麦片Drum-dried Whole wheat Groats(DWG),(3)α-淀粉酶-滚筒干燥速食全麦片Drum-dried Whole wheat Groats with α-Amylase(DWGA),(4)纤维素酶-滚筒干燥速食全麦片Drum-dried Whole wheat Groats with Cellulase(DWGC),(5)α-淀粉酶-纤维素酶-滚筒干燥速食全麦片Drum-dried Whole wheat Groats with α-Amylase and Cellulase(DWGAC)。

1.3.1 样品制备 试验组(5):全麦粉原料粉碎至80目,过筛,以高温α-淀粉酶稀释液添加至全麦粉中,添加量0.5 U∙g-1,即每克全麦粉添加0.5 U单位的酶液;再加入质量比为2 000 U∙g-1的纤维素酶,调节麦浆质量分数至25%,即料液比为1﹕4,混合均匀后,放置于50℃磁力搅拌水浴锅中保温30 min,升温至80℃进行预酶解,保温10 min。预酶解后的全麦粉利用滚筒干燥进行干燥,工艺参数参考齐希光等[21]并稍加修改。设置滚筒温度为150℃,滚筒转速为2 Hz,制得预酶解-滚筒干燥全麦片。试验组(1)、(2)样品为直接滚筒干燥制备,试验组(3)样品中只加入α-淀粉酶进行制备,试验组(4)样品中只加入纤维素酶进行制备,其他步骤同上。全麦片均在55℃恒温箱中干燥2 h,低温密封保存。

1.3.2 基本成分的测定 总淀粉含量的测定:酶水解法,参照GB 5009.9—2016。蛋白质含量的测定:凯氏定氮法,小麦粉蛋白质系数5.70;全麦粉蛋白质系数为5.83,参照GB 5009.5—2016。膳食纤维含量的测定:酶重量法,参照GB/T 5009.88—2014。植酸含量的测定:三氯化铁显色法,参照GB/T 5009.153—2003。还原糖含量的测定:3,5-二硝基水杨酸比色法。

1.3.3 复水性指数的测定 参照KIM等[22]的方法稍作改进。将20 g样品加入50 mL蒸馏水中,并在25℃静置1 min。将混合物以2 000×g离心15 min。测定沉淀物的重量作为复水后样品的重量。复水性速率的计算公式见式(1)。

width=123.35,height=26.8 (1)
1.3.4 水溶性指数(WSI)和吸水性指数(WAI)的测定 参照ANDERSON等[23]的方法稍作改进。将全麦粉过60目筛网,取2 g左右的样品,标记为m0,放入已知质量m1的离心管中,加入25 mL蒸馏水,剧烈振荡2min,直至样品完全分散形成悬浮液体系。将悬浮液体系在30℃水浴中保温30min,每间隔10min振荡一次,水浴后4000r/min离心15min。将上清液慢慢倒入已恒重质量m2的烧杯中,烘干称质量m3。同时,称取离心管及沉淀的凝胶称质量m4,水溶性指数(water soluble index,WSI)和吸水性指数(water absorption index,WAI)的计算公式见式(2)、(3)。

width=128.15,height=28.2 (2)

width=130.05,height=28.5 (3)
1.3.5 结块率的测定 参照LIU等[24]的方法并略作修改。称取样品5 g置于250 mL烧杯中,加入70℃的去离子水100 mL,以10 r/min速率进行轻微搅拌30 s;取20目的筛网对残渣进行过滤,用清水漂洗筛上物一次,沥干后于105℃恒温干燥箱内带筛网烘干至恒重。结块率(Agglomerate Rate,AR)按式(4)计算:

width=76.25,height=25.9 (4)

式中,W:结块物的干重,单位为g;M:样品干重,单位为g。

1.3.6 色差的测定 将一定量的样品粉末置于石英皿中,选用L*、a*、b*色度空间表示方法进行测定,对照组色度用L0、a0、b0表示,色差值(ΔE*)按式(5)计算:

width=170.05,height=18.3 (5)
1.3.7 黏度的测定 采用快速黏度仪分析,具体方法参考AACC76—21并稍作改动[25]。称取4.0 g待测样品,添加25 mL的去离子水。0—10 s 在960 r/min条件下从室温加热至50℃,然后在160 r/min条件下恒温60 s,在840 s内逐渐升温至95℃后恒温600 s,570 s内降温至50℃后恒温570 s,根据糊化曲线计算峰值黏度、谷值黏度、最终黏度、崩解值和回生值。

1.3.8 糊化度的测定 参照文献[26-27]的方法并略加改动。称取0.1 g样品,分散于49 mL的去离子水中,添加1.0 mL的10 mol∙L-1 KOH溶液,以10 r/min速率在磁力搅拌器上搅拌5 min,悬浮液以4 500×g离心10 min;移取1.0 mL上清液,混合0.6 mL的0.5 mol∙L-1盐酸,用去离子水定容至10 mL,最后添加0.1 mL的碘液(0.5 g晶体碘和2 g KI溶于50 mL去离子水),混合均匀后测定混合液在600 nm处的吸光值A1;上述步骤中KOH的体积替换为2.5 mL,盐酸的体积替换为1.5 mL,其他相同,测得吸光值A2。糊化度(degree of gelatinization,DG)按式(6)计算:

width=79.35,height=28.7 (6)
1.3.9 淀粉体外消化特性的测定 参照文献[28-29]的方法并略作改动。准确称取0.3 g样品,加入10 mL醋酸缓冲液(0.2 mol∙L-1,pH 5.2)使样品分散均匀,再加入10 mL混合酶液(290 U∙mL-1猪胰α淀粉酶,15 U∙mL-1糖化酶);将反应体系置于37℃、120 r/min下水浴振荡,分别在酶解反应0、20和120 min时取样1.0 mL,加入2.0 mL水稀释,置于沸水浴中5 min使酶失活,冷却后6 000×g离心10 min,取上清液定容。定容液用DNS法测定还原糖的含量。

淀粉的体外消化特性通过快消化淀粉(RDS)、慢消化淀粉(SDS)和抗性淀粉(RS)来表征,按式(7)计算:

width=140.55,height=72.95 (7)
式中,G20:20 min内水解产生的还原糖量,单位为mg;G120:120 min内水解产生的还原糖量,单位为mg;FG:酶水解前样品中游离还原糖含量,单位为mg;TS:总淀粉含量,单位为mg。

1.3.10 蛋白质体外消化率的测定 参考崔亚楠[30]、TANG[31]、FU[32]等的方法并略作修改。采用胃蛋白酶(10 000 U∙g-1)和胰蛋白酶(250 U∙mg-1)来测定体外消化率:准确称取样品2 g于250 mL锥形瓶中,加入200 mL去离子,用1.0 mol·L-1 HCl调pH至1.5,将其置于37℃水浴预热5 min;加入2 mL的胃蛋白酶液(40 mg胃蛋白酶溶于2 mL 0.1 mol∙L-1的KH2PO4缓冲液(pH 2)),混合均匀后于37℃震荡水浴中反应;在酶解反应0、10、20、30、60和120 min时,分别取10 mL酶解液,沸水浴5 min灭酶;反应120 min后用1.0 mol∙L-1 NaOH溶液调pH至7.0,加入胰蛋白酶液(200 mg胰蛋白酶溶于2 mL 0.1 mol∙L-1的Tris-HCl缓冲液(pH 7.0)),于37℃水浴中进一步消化,在酶解反应0、10、20、30、60和120 min时,分别取10 mL酶解液,沸水浴5 min灭酶。

10 mL酶解液与等体积的10%(w/v)三氯乙酸(TCA)混合均匀,于8 000×g离心30 min。将沉淀用10 mL 10%(w/v)TCA洗涤,在同样条件下再次离心,取沉淀采用凯式定氮法(N×5.83)测定沉淀中氮含量。每个时间点的蛋白质体外消化率(IVPD)按式(8)计算:

width=109.7,height=28.7 (8)
式中,N0—样品中TCA不溶性氮,单位为mg;Nt—样品消化t(min)时TCA不溶性氮,单位为mg。

1.4 试验数据处理
试验重复3次,试验数据采用SPSS 17.0进行单因素方差分析,显著性水平为0.05,数据以均值±标准差(Means±SD)表示;采用Origin 9.0作图。图表中某种物质的含量均以样品干重计。

2 结果
2.1 预酶解-滚筒干燥对全麦片冲调性的影响
由表1可知,与精麦片DRG相比,直接滚筒干燥全麦片DWG较复水速率显著降低。与DWG的复水速率相比,预酶解-滚筒干燥全麦片样品的复水速率均有显著性升高(P<0.05),其中,DWGAC复水速率最高。与DWG样品相比,预酶解-滚筒干燥处理DWGA、DWGC、DWGAC的结块率分别降低了约69.91%、32.26%、81.34%(P<0.05)。预酶解-滚筒干燥显著降低了3种全麦片的淀粉糊化度(P<0.05),相比于对照样品DWG,DWGA、DWGC、DWGAC的淀粉糊化度分别约增长了0.85、0.81、0.86倍。

2.2 预酶解-滚筒干燥对全麦片WAI及WSI的影响
由图1可知,DRG和DWG两种直接滚筒干燥样品的WAI和WSI没有显著性差异,而预酶解-滚筒干燥处理显著提高了全麦片的WSI(P<0.05),DWGA、DWGC、DWGAC 3种全麦片样品较DWG样品的WSI分别提高了约4.98、2.07和5.04倍。WAI均有显著降低(P<0.05),DWGA、DWGC、DWGAC 3种全麦片较DWG的WAI分别降低了约62.05%、37.84%和65.94%。

表1 不同处理对滚筒干燥全麦片复水性、粘结性的影响

Table 1 Effects of different processes on the rehydration and liquidity of drum drying whole wheat flakes


DRG:滚筒干燥精麦片;DWG:滚筒干燥全麦片;DWGA:α-淀粉酶-滚筒干燥全麦片;DWGC:纤维素酶-滚筒干燥速食全麦片;DWGAC:α-淀粉酶-纤维素酶-滚筒干燥全麦片。同列不同小写字母表示在0.05水平上存在显著差异。下同

DRG: Drum-dried Refined wheat Groats; DWG: Drum-dried Whole wheat Groats; DWGA: Drum-dried Whole wheat Groats with α-Amylase; DWGC: rum-dried Whole wheat Groats with Cellulase; DWGAC: Drum-dried Whole wheat Groats with α-Amylase and Cellulase. The different small letters in the same column indicate significant differences at the 0.05 level. The same as below

width=448.05,height=169.45
不同小写字母表示差异达显著水平(P<0.05)。下同

Different lowercase letters indicate significant differences (P<0.05). The same as below

图1 不同处理对滚筒干燥全麦片WAI和WSI的影响

Fig. 1 Effects of different processes on the water absorption index and the water soluble index of drum drying whole wheat flakes

2.3 预酶解-滚筒干燥对全麦片色度的影响
与DRG精制麦片样品相比,DWG全麦样品的b*值无显著差异,L*值降低、a*值显著增加,产生了一定色差。从表2中还可以看出,DWGA、DWGC、DWGAC 3种预酶解滚筒干燥样品较直接滚筒干燥样品的L*值显著降低,a*值和b*值显著增加,因为经过高温处理后的全麦片亮度值降低。

全麦粉在经过预酶解-滚筒干燥后,产生了大量的还原糖,对美拉德反应、焦糖化反应等非酶褐变具有一定的促进作用。预酶解过程中的湿热作用使全麦粉原料粉质有一定程度的软化。此外,全麦麸皮中的花色苷色素等含量丰富[33],在热加工过程中容易降解,并且预酶解-滚筒干燥过程中淀粉酶的酶解作用对这些物质具有一定的释放作用,导致全麦片的红/绿值和黄/蓝值显著升高,精制麦片中的这些色素物质含量很低,则并未出现这种现象。

2.4 预酶解-滚筒干燥对全麦片黏度的影响
由表3可知,与DRG相比,DWG的衰减值、回生值较高,而预酶解-滚筒干燥样品DWGA、DWGC、DWGAC的衰减值、回生值均显著低于直接滚筒干燥样品DWG,衰减值下降,说明其热稳定性、抗剪切力和耐搅拌力增强。而回生值是淀粉冷却后的重新排列,与样品的老化程度有关,回生值越高,越容易老化[34-35]。研究结果说明预酶解-滚筒干燥处理后的热糊稳定性好且淀粉不易老化,其中DWGA、DWGAC的最低黏度、衰减值、回生值显著低于DWG,表明这两种样品的热稳定性较好。

表2 不同处理对滚筒干燥全麦片色度的影响

Table 2 Effects of different processes on the chrominance of drum drying whole wheat flakes


表3 不同处理对滚筒干燥全麦片糊化特性的影响

Table 3 Effects of different processes on the pasting properties of drum drying whole wheat flakes


2.5 预酶解-滚筒干燥对全麦片淀粉、还原糖的影响
与DRG相比,DWG的淀粉含量较低,还原糖含量无显著差异(图2)。预酶解-滚筒干燥样品中的还原糖含量相比于其他两种样品中还原糖含量显著增加,DWGA、DWGC、DWGAC 3种预酶解-滚筒干燥样品的还原糖含量相比于对照直接滚筒干燥全麦片样品分别增加了2.53、0.56、1.81倍(P<0.05)。预酶解-滚筒干燥样品种的淀粉含量相比于其他两种样品种淀粉含量显著降低,DWGA、DWGC、DWGAC 3种预酶解-滚筒干燥样品的淀粉含量相比于对照直接滚筒干燥全麦片样品分别减少了约11.11%、6.46%、10.89%(P<0.05)。其中DWGAC中添加了α-淀粉酶和纤维素酶,α淀粉酶水解作用直接表现为淀粉含量的显著降低和还原糖含量的显著升高。纤维素酶能够分解纤维素,产生大量的还原糖,研究结果显示复合酶解处理对还原糖的生成具有协同作用。

width=473.1,height=157.1
图2 不同处理对滚筒干燥全麦片总淀粉含量和还原糖含量影响

Fig. 2 Effects of different processes on the total starch content and the reducing sugar content of drum drying whole wheat flakes

2.6 预酶解-滚筒干燥对全麦片植酸含量的影响
由图3可知,相比于DWG,DRG样品中植酸含量较低,因植酸主要存在于植物的种子、根干和茎中,其中以谷物的麸皮和胚芽中含量最高。相比于对照样品DWG,预酶解-滚筒干燥样品DWGA、DWGC、DWGAC的植酸含量分别降低约6.67%、8.32%、13.02%。

2.7 预酶解-滚筒干燥对全麦片膳食纤维含量的影响
由图4可知,精麦片DRG与直接滚筒全麦片DWG的膳食纤维含量有显著性差异,主要是因为麸皮中含有大量膳食纤维。相比于对照样品DWG,预酶解-滚筒干燥样品中的不可溶膳食纤维IDF含量显著降低,分别降低了约18.23%、24.66%、32.43%;其可溶性膳食纤维SDF含量分别显著提高了约35.83%、53.39%、69.49%;总膳食纤维TF含量分别显著降低了约7.09%、8.59%、11.45%。

width=225.85,height=138.2
图3 不同处理对滚筒干燥全麦片植酸含量的影响

Fig. 3 Effects of different processes on the phytic acid content of drum drying whole wheat flakes

2.8 预酶解-滚筒干燥对全麦片淀粉体外消化特性的影响
预酶解-滚筒干燥对全麦片淀粉体外消化特性的影响如图5所示。与对照组DRG相比,4种全麦片样品的快消化淀粉含量均有所下降。预酶解-滚筒干燥样品DWGA、DWGC、DWGAC相比于直接滚筒干燥全麦片DWG,其快消化淀粉含量显著增高,分别增长了约22.34%、34.84%和46.59%,其中DWGAC快消化淀粉含量最高,易于人体对淀粉的快速消化吸收。

width=223.8,height=172
同一成分不同字母表示差异达显著性水平(P<0.05) Different letters of the same component indicate significant differences (P<0.05)

图4 不同处理对滚筒干燥全麦片膳食纤维含量的影响

Fig. 4 Effects of different processes on the dietary fiber content of drum drying whole wheat flakes

2.9 预酶解-滚筒干燥对全麦片蛋白质体外消化率的影响
预酶解-滚筒干燥对全麦片蛋白质体外消化的影响如图6、图7所示。与对照组DWG相比,预酶解-滚筒干燥提高了3种全麦片的蛋白质体外消化速率,且显著提高了胃和肠消化终点处的消化率(P<0.05)。在胃蛋白酶水解120 min时,模拟胃液中DWG的蛋白质体外消化率为43.11%,在预酶解-滚筒干燥处理后,DWGA、DWGC、DWGAC分别显著增高了约0.33、0.25、0.26倍。在胰蛋白酶水解240 min结束时,DWGAC的蛋白质体外消化率达到了75.31%,显著高于DRG和DWG。研究结果表明,预酶解-滚筒干燥对全麦片的体外蛋白质消化率显著增加。

width=218.05,height=174.15
图5 不同处理对滚筒干燥全麦片淀粉体外消化特性的影响

Fig. 5 Effects of different processes on the in vitro digestion of starch of drum drying whole wheat flakes

width=227.25,height=170.8
图6 不同处理对滚筒干燥全麦片蛋白质体外消化速率的影响

Fig. 6 Effects of different processes on the in vitro digestion of protein of drum drying whole wheat flakes

width=228.6,height=164.6
图7 不同处理对滚筒干燥全麦片胃蛋白酶、胰蛋白酶消化终点速率的影响

Fig. 7 Effects of different processes on the pepsin, trypsin digestion end rate of drum drying whole wheat flakes

3 讨论
3.1 预酶解-滚筒干燥影响全麦片的冲调性
全麦片的WAI主要反映了淀粉的持水性能,而WSI主要表示大分子物质降低的程度[36]。预酶解-滚筒干燥过程中高温α-淀粉酶能够加速淀粉分子的降解,使小分子寡糖和还原糖等可溶性物质增加[37],同时淀粉的结构被破坏,与水作用后其吸水和持水性能下降。QI等[38]研究发现添加α-淀粉酶的糙米粉经滚筒干燥后,其WAI比直接滚筒干燥的糙米粉样品均有下降,而WSI均有升高,与本研究结果基本一致。此外,添加外源酶进行预酶解处理是在滚筒干燥过程之前进行,反应时间长,原料的酶解程度较高,能够增加全麦片中淀粉的糊化程度,从而提高溶解度,即表现为WSI升高[39-40]。

复水性是反映麦片的重要品质之一。谢晶等[41]发现酶解后的莲子干燥处理后对复水性的影响显著,与对照组相比,复水速率显著增加,与本研究结果一致。在滚筒干燥过程中,酶解加剧了淀粉的降解,可能是导致其结块率下降的原因,许亚翠等[42]研究发现在挤压膨化过程中添加α-淀粉酶能使大米粉的结块率显著降低。冯健[43]研究发现,滚筒干燥处理能显著提高小麦粉的糊化度。而全麦粉在预酶解-滚筒干燥处理过程中,淀粉结晶结构受到破坏,双折射现象消失,即淀粉高度糊化[44]。纤维素酶的添加降解了小麦麸皮中的非淀粉多糖,破坏了麦麸致密的纤维结构,能提高水溶性膳食纤维的含量,使其在预酶解蒸煮过程中水分较易渗透,淀粉更容易糊化,这与张强等[45]的研究结果一致。

3.2 预酶解-滚筒干燥影响全麦片的糊化特性
全麦片中的淀粉的糊化特性与淀粉的组成和结构密切相关[46],除了淀粉本身的结构差异,外源酶的添加对其糊化特性有重要的影响。α-淀粉酶主要通过随机水解淀粉分子内部的α-1,4糖苷键,将淀粉水解成寡聚糖、麦芽糖和葡萄糖等小分子物质。在淀粉的糊化过程中,α-淀粉酶会使淀粉分解,导致其黏度显著下降[47]。另外,小麦麸皮中存在大量膳食纤维,其吸水能力远高于小麦中的淀粉和蛋白质,降低了糊化体系中可利用水的运转速率,进而阻碍了淀粉颗粒吸水糊化,同时增加了该体系中淀粉/水的比例[48-49]。

峰值温度反映了淀粉完全糊化所需要的能量;峰值黏度反映了淀粉在蒸煮过程中达到的黏度。崩解值反映了淀粉在温度和剪切力的作用下的耐受能力;回生值反映了淀粉在冷却时浓度增加的能力。徐斌等[50]的研究表明,滚筒干燥处理能显著降低燕麦粉的黏度。在本研究中,与DWG相比,预酶解-滚筒干燥处理后的样品(DWGA、DWGAC)衰减值、回生值显著降低,说明预酶解-滚筒干燥处理后的全麦片对温度和剪切力的耐受能力强,热稳定性较好。

3.3 预酶解-滚筒干燥影响全麦片的营养特性
全麦片中膳食纤维的存在,对全麦片的消化特性有一定的不良影响。淀粉在酶解作用后水解,产生大量的糊精、葡萄糖、麦芽糖等小分子产物,而淀粉体外模拟消化是酶促反应的过程,在预酶解蒸煮的过程中,加热能显著增加酶促反应的速率。齐希光等[21]研究发现滚筒干燥过程中抗性淀粉含量无显著性差异,可能是由于滚筒干燥对淀粉的损伤程度较低,降低了其对外源酶的敏感性。同时,左光明等[51]的研究也发现,随着温度升高,抗性淀粉含量增加,但温度继续增加时,淀粉分子链会发生一定程度的断裂,降低了淀粉分子之间的聚合度,抗性淀粉含量反而会略有下降。此外,BJÖRCK等[18]的研究发现小麦精粉滚筒干燥过程中的甘油三脂部分水解,产生单甘油和游离脂肪酸,这两种产物易与直链淀粉形成淀粉-脂肪复合物。随着湿热作用的时间加长,包裹淀粉的细胞壁破坏,减弱了淀粉与蛋白质、纤维等物质的作用,增加其与消化酶的接触面积,快消化淀粉含量增加,慢消化淀粉含量下降[52-53]。

植酸普遍存在于植物源食品中,是影响矿质元素吸收的主要抗营养成分。VOHRA等[54]研究发现植酸盐与蛋白和淀粉相互作用,能降低其消化率。植酸中的6个活性基团使其成为强阳离子螯合剂,能与Ca2+、Mg2+、Fe2+、Zn2+等阳离子结合,影响矿物质的吸收。本研究中精麦片的植酸含量显著低于直接滚筒干燥全麦片,而滚筒干燥加热过程中植酸被降解,预酶解破坏全麦麸皮的结构,加剧了滚筒干燥对植酸的降解,能释放肌醇和矿物质,提高矿物质的生物利用度[55-56]。膳食纤维是全麦粉中一种重要的营养物质,MARTI等[57]研究发现添加纤维素酶能增加可溶性膳食纤维的含量,与本研究结果一致。MESSIA等[58]研究发现添加木聚糖酶、淀粉酶和纤维素酶能显著增加可溶性膳食纤维含量,本研究也得出预酶解-滚筒干燥处理后,其可溶性膳食纤维显著增加。

蛋白质消化率是反应蛋白质在消化道分解的指标,是评价食品营养价值的重要指标之一[59]。影响蛋白质体外消化率的影响因素有很多,在加工过程中形成的蛋白质-淀粉、蛋白质-脂质和蛋白质-纤维素复合物可能会降低蛋白质的消化率;植酸和多酚能够与蛋白质结合形成复合物,降低蛋白质的溶解度和生物利用度[60-62]。任广呜[63]研究发现,滚筒干燥处理能显著增加小麦粉的蛋白质消化利用率。在本研究中,预酶解-滚筒干燥过程中淀粉的水解、纤维素的降解都能释放一定含量的蛋白质。同时,预酶解过程中的湿热作用可能使蛋白质发生了部分的热变性,蛋白质分子空间结构从有序逐渐向无序转化,暴露出了更多的酶切位点,在体外消化过程中更易被蛋白酶水解,水解过程中部分肽键和二硫键被打断,使其体外消化速率显著提高[64]。

4 结论
(1)与直接滚筒干燥全麦片相比,预酶解-滚筒干燥处理显著提高了全麦片的复水速率、糊化度,显著降低了全麦片的结块率;同时,处理后的全麦片吸水性指数显著降低,可溶性物质增加,水溶性指数显著升高,对其冲调性有一定程度的改善。

(2)预酶解-滚筒干燥使全麦片的黄/蓝值和红/绿值显著升高,但其亮度显著降低,3种预酶解方式对全麦片的色差并无显著性差异。与直接滚筒干燥样品相比,预酶解-滚筒干燥处理显著降低了全麦片的黏度,同时使其衰减值、回生值显著降低,改善了全麦片对剪切力的耐受能力,提高了其热稳定性。

(3)预酶解-滚筒干燥处理使全麦片的淀粉、植酸含量显著降低,还原糖含量和糊化度显著升高,淀粉体外消化速率加快,快消化淀粉百分含量显著增高,蛋白质体外消化速率加快,在一定程度上改善了全麦片的营养消化利用率。

References

[1] 王玉庭. 中国小麦消费现状及趋势分析. 中国食物与营养, 2010(5): 47-50.

Wang Y T. Status of wheat consumption and its trend in China.Food and Nutrition in China, 2010(5): 47-50. (in Chinese)

[2] 李林轩. 我国小麦制粉业的现状及发展趋向. 粮食加工, 2010, 35(3): 15-18, 43.

LI L X. The situation and development trends of wheat flour milling in our country.Grain Processing, 2010, 35(3): 15-18, 43. (in Chinese)

[3] MARQUART L, JACOBS D R, MCINTOSH G H, POUTANEN K, REICKS M. Whole grains and health. Nutrition & Food Science, 2008, 38(3): 296.

[4] Barros F, Alviola J N, Rooney L W. Comparison of quality of refined and whole wheat tortillas. Journal of Cereal Science, 2010, 51(1): 50-56.

[5] ONYENEHO S N, HETTIARACHCHY N S. Antioxidant activity of durum wheat bran. Journal of Agricultural and Food Chemistry, 1992, 40(9): 1496-1500.

[6] SEIBEL W. Future trends in pasta products. Pasta and Noodle Technology. JE Kruger, RB Matsuo, and JW Dick, eds. Am. Assoc. Cereal Chem.: St. Paul, MN, 1996: 331-349.

[7] 汪丽萍, 谭斌, 田晓红, 刘艳香, 刘明. 国内外市场上全麦粉的品质分析研究. 粮食科技与经济, 2012(B12): 8-10.

WANG L P, TAN B, TIAN X H, LIU Y X, LIU M. Study on quality of whole wheat flour from domestic and overseas market. Grain Science and Technology and Economy, 2012(B12): 8-10. (in Chinese)

[8] 徐同成, 王文亮, 祝清俊, 邱登林, 李霞, 杜方岭. 全麦食品的营养与保健功能研究进展. 中国食物与营养, 2009(10): 55-57.

XU T C, WANG W L, ZHU Q J, QIU D L, LI X, DU F L.Advancement of nutrition in whole-wheat food and its health function. Food and Nutrition in China, 2009(10): 55-57. (in Chinese)

[9] BHAT N A, WANI I A, HAMDANI A M, GANI A, MASOODI F A. Physicochemical properties of whole wheat flour as affected by gamma irradiation. LWT-Food Science and Technology, 2016, 71: 175-183.

[10] 葛宁. 膨化青稞芽麦片关键工艺参数和配方优化[D]. 雅安: 四川农业大学, 2014.

GE N. Puffing barley malt cereal key process parameters and formula optimization [D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese)

[11] HENRÍQUEZ C, CÓRDOVA A, ALMONACID S, SAAVEDRA J. Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 2014, 143: 146-153.

[12] PUA C K, HAMID N S A, TAN C P, MIRHOSSEINI H, RAHMAN R B A, RUSUL G. Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT - Food Science and Technology, 2010, 43(2): 343-349.

[13] ARISTIZÁBAL J, COMBARIZA A, FERNÁNDEZ A, SÁNCHEZ M. The effect of extrusion and drying on roller techniques concerning the rheological characteristics of rice-, corn-, sweet potato-, bean-and cassava root-and leaf-based composite flour. Ingeniería e Investigación, 2013, 33(1): 29-34.

[14] SUPPRUNG P, NOOMHORM A. Optimization of drum drying parameters for low amylose rice (KDML105) starch and flour. Drying Technology, 2003, 21(9): 1781-1795.

[15] YAMATO M A C, SILVA V M D, SOUZA E C G, FERRARI C C, GERMER S P M. Stability of mango flakes obtained by drum drying with different additives. Drying Technology, 2019, 38(3): 1-15.

[16] FELKER F C, KENAR J A, BYARS J A, singh M, LIU S X. Comparison of properties of raw pulse flours with those of jet-cooked, drum-dried flours. LWT-Food Science and Technology, 2018, 96: 648-656.

[17] 崔亚楠, 张晖, 王立, 钱海峰, 齐希光. 加工方式对谷物和豆类估计血糖生成指数的影响. 食品与机械, 2017, 33(9): 1-4.

CUI Y N, ZHANG H, WANG L, QIAN H F, QI X G. The effects of different processing method on expected glycemic index of cereals and legumes. Food & Machinery, 2017, 33(9): 1-4. (in Chinese)

[18] Björck I, Asp N G, Birkhed D, ELIASSON A C, SJöBERG L B, LUNDQUIST I. Effects of processing on starch availability in vitro and in vivo. II. Drum-drying of wheat flour. Journal of Cereal Science, 1984, 2(3): 165-178.

[19] 闫金婷, 郑建梅, 刘变芳, 张燕, 张国权, 任长忠, 胡新中. 国内市场纯燕麦片及复合麦片营养和微生物指标分析. 中国粮油学报, 2013, 28(3): 23-28.

YAN J T, ZHENG J M, LIU B F, ZHANG Y, ZHANG G Q, REN C Z, HU X Z. Comparison of the nutrition quality and microbiologic characters of flakes from Chinese market. Journal of the Chinese Cereals and Oils Association, 2013, 28(3): 23-28. (in Chinese)

[20] 车甜甜. 皮燕麦片和裸燕麦片的营养、糊化以及风味特性比较研究[D]. 杨凌: 西北农林科技大学, 2015.

CHE T T. Comparison of nutrition, pasting properties and flavor characteristics of husked and naked oat flakes [D]. Yangling: Northwest A & F University, 2015. (in Chinese)

[21] 齐希光, 张冬媛, 张晖, 王立, 钱海峰. 双酶协同滚筒干燥加工冲调糙米粉的工艺研究. 中国粮油学报, 2017, 32(10): 139-147.

QI X G, ZHANG D Y, ZHANG H, WANG L, QIAN H F. Drying of brown rice powder using drum combined with two enzymes. Journal of the Chinese Cereals and Oils Association, 2017, 32(10): 139-147. (in Chinese)

[22] KIM S H, CHOI Y J, LEE H, LEE S H, AHN J B, NOH B S, MIN S C. Physicochemical properties of jujube powder from air, vacuum, and freeze drying and their correlations. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(2): 271-279.

[23] ANDERSON R A, CONWAY H, PEPLINSKI A J. Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch- Stärke, 1970, 22(4): 130-135.

[24] LIU J B, MA S, LIU B Q, YANG X, ZHAN Y, WANG E L. Effects of different drying methods on solubility of whole egg powder. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 383-388.

[25] BLAZEK J, COPELAND L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydrate Polymers, 2008, 71(3): 380-387.

[26] BIRCH G G, PRIESLEY R J. Degree of gelatinization of cooked rice. Starch-Stärke, 1973, 25(3): 98-100.

[27] VIDYA S, RAVI R, BHATTACHARYA R. Effect of thermal treatment on selected cereals and millets flour doughs and their baking quality. Food and Bioprocess Technology, 2013, 6(5): 1218-1227.

[28] ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions. European journal of clinical nutrition, 1992, 46: S33-50.

[29] CHUNG H J, LIU Q, HOOVER R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 2009, 75(3): 436-447.

[30] 崔亚楠, 张晖, 王立, 钱海峰, 齐希光. 蛋白质、脂肪对豆类理化特性及体外消化特性的影响. 中国粮油学报, 2018, 33(2): 12-17.

CUI Y N, ZHANG H, WANG L, QIAN H F, QI X G.Physicochemical properties and in vitro starch digestibility of legumes as affected by fat and protein. Journal of the Chinese Cereals and Oils Association, 2018, 33(2): 12-17. (in Chinese)

[31] TANG C H. Functional properties and in vitro digestibility of buckwheat protein products: Influence of processing. Journal of Food Engineering, 2007, 82(4): 568-576.

[32] FU T J, ABBOTT U R, HATZOS-SKINTGES C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid A comparative study. Journal of Agricultural and Food Chemistry, 2002, 50(24): 7154-7160.

[33] 杨三维, 李刘军, 乔玲, 赵佳佳, 郑兴卫, 葛川, 芦艳珍, 田鹏. 紫小麦麸皮花色苷提取及应用研究. 农学学报, 2019, 9(2): 78-82.

YANG S W, LI L J, QIAO L, ZHAO J J, ZHENG X W, GE C, LU Y Z, TIAN P.Antioxidant activity and wool dyeing of anthocyanins from purple wheat bran. Journal of Agriculture, 2019, 9(2): 78-82. (in Chinese)

[34] 潘治利, 张垚, 艾志录, 李真, 范会平, 索标. 马铃薯淀粉糊化和凝胶特性与马铃薯粉品质的关系. 食品科学, 2017, 38(5): 197-201.

PAN Z L, ZHANG Y, AI Z L, LI Z, FAN H P, SUO B. Relationship between gelatinization and gelling properties of potato starch and potato noodles. Food Science,2017, 38(5): 197-201. (in Chinese)

[35] 艾志录, 孙茜茜, 潘治利, 谢新华, 索标, 田萍萍. 不同来源淀粉特性对水晶皮质构品质的影响. 农业工程学报, 2016, 32(1): 318-324.

AI Z L, SUN Q Q, PAN Z L, XIE X H, SUO B, TIAN P P.Effect of different starch source properties on crystal leather textural quality. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 318-324. (in Chinese)

[36] BRYANT R J, KADAN R S, CHAMPAGNE E T, vinyard b, boykin d. Functional and digestive characteristics of extruded rice flour. Cereal Chemistry Journal, 2001, 78(2): 131-137.

[37] PINKAEW H, THONGNGAM M, WANG Y J, NAIVIKUL O. Isolated rice starch fine structures and pasting properties changes during pre-germination of three Thai paddy (Oryza sativa L.) cultivars. Journal of Cereal Science, 2016, 70: 116-122.

[38] QI X G, CHENG L L, LI X J, ZHANG D Y, WU G C, ZHANG H, WANG L, QIAN H F, WANG Y N. Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chemistry, 2019, 274: 444-451.

[39] 杨波涛. 挤压与酶法集成制备速溶糙米粉工艺和食用品质的研究[D]. 郑州: 河南工业大学, 2013.

YANG B T. Studies of preparation process and the edible quality of instant brown rice powder through the method of combining extrusion technology and enzymolysis technology [D]. Zhengzhou: Henan University of Technology, 2013. (in Chinese)

[40] 杨铭铎, 樊祥富, 张洪微, 贾庆胜. 黑龙江小麦麸皮膳食纤维挤压膨化—酶法改性工艺条件的优化. 农产品加工(学刊), 2010(12): 17-19.

YANG M D, FAN X F, ZHANG H W, JIA Q S.Optimum condition of dietary fiber from wheat bran by extrusion technology and cellulose enzyme method. Academic Periodical of Farm Products Processing, 2010(12): 17-19. (in Chinese)

[41] 谢晶, 涂世, 刘睿. 酶法修饰对莲子粉黏度及复水性的影响. 食品科学, 2010, 31(22): 176-179.

XIE J, TU S, LIU R.Effect of enzymatic modification on viscosity and rehydration of lotus seed powder. Food Science, 2010, 31(22): 176-179. (in Chinese)

[42] 许亚翠, 钱海峰, 张晖. 高温型α-淀粉酶对膨化米粉冲调性的影响. 食品与发酵工业, 2012, 38(8): 73-77.

XU Y C, QIAN H F, ZHANG H.Effect of thermo stable α-amylase on solubility of extruded rice powder. Food and Fermentation Industries, 2012, 38(8): 73-77. (in Chinese)

[43] 冯健. 一种新型谷物营养方便早餐食品的加工工艺优化研究[D]. 北京: 中国农业机械化科学研究院, 2011.

FENG J. Study on optimization in processing technology of a new cereal breakfast food [D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2011. (in Chinese)

[44] 杜双奎, 魏益民, 张波. 挤压膨化过程中物料组分的变化分析. 中国粮油学报, 2005, 20(3): 39-43, 47.

DU S K, WEI Y M, ZHANG B. Changes of material components during extrusion. Journal of the Chinese Cereals and Oils Association. 2005, 20(3): 39-43, 47. (in Chinese)

[45] 张强, 贾富国, 杨瑞雪, 付倩, 王吉泰, 韩珊. 纤维素酶预处理糙米发芽工艺优化. 中国粮油学报, 2012, 27(10): 92-97.

ZHANG Q, JIA F G, YANG R X, FU Q, WANG J T, HAN S. Optimization of brown rice germination process with cellulase treatment. Journal of the Chinese Cereals and Oils Association, 2012, 27(10): 92-97. (in Chinese)

[46] 张智勇, 王春, 孙辉. 小麦理化特性与面条食用品质的相关性研究进展. 粮油食品科技, 2011, 19(5): 1-4, 7.

ZHANG Z Y, WANG C, SUN H.Development of study on the relativity between noodle quality and physicochemical properties of wheat. Science and Technology of Cereals, Oils and Foods, 2011, 19(5): 1-4, 7. (in Chinese)

[47] YADAV A R, GUHA M, THARANATHAN R N, RAMTEKE R S. Changes in characteristics of sweet potato flour prepared by different drying techniques. LWT-Food Science and Technology, 2006, 39(1): 20-26.

[48] 陈建省, 邓志英, 吴澎, 田纪春, 谢全刚. 添加面筋蛋白对小麦淀粉糊化特性的影响. 中国农业科学, 2010, 43(2): 388-395.

CHEN J X, DENG Z Y, WU P, TIAN J C, XIE Q G.Effect of added gluten on pasting properties of wheat starch. Scientia Agricultura Sinica, 2010, 43(2): 388-395. (in Chinese)

[49] 姜小苓, 李小军, 冯素伟, 董娜, 胡铁柱, 李淦, 茹振钢. 蛋白质和淀粉对面团流变学特性和淀粉糊化特性的影响. 食品科学, 2014, 35(1): 44-49.

JIANG X L, LI X J, FENG S W, DONG N, HU T Z, LI G, RU Z G. Effects of addition of different amounts of gluten and starch on wheat dough rheological properties and starch pasting characteristics. Food Science, 2014, 35(1): 44-49. (in Chinese)

[50] 徐斌, 孙伊琳, 刘淑一, 陈小沛, 姜松, 陈中伟, 孙俊. 预糊化处理对高含量燕麦挂面品质的影响. 现代食品科技, 2019, 35(6): 139-144, 138.

XU B, SUN Y L, LIU S Y, CHEN X P, JIANG S, CHEN Z W, SUN J. Effect of pregelatinization on the quality of noodles with a high oat flour content. Modern Food Science and Technology, 2019, 35(6): 139-144, 138. (in Chinese)

[51] 左光明, 谭斌, 罗彬, 秦礼康. 全营养苦荞米抗性淀粉形成的工艺参数优化. 食品科学, 2008, 29(9): 130-134.

ZUO G M, TAN B, LUO B, QIN L K.Optimization of process parameters of resistant starch of whole tartary buckwheat rice. Food Science, 2008, 29(9): 130-134. (in Chinese)

[52] 付立新. 湿热处理辐照玉米淀粉制备慢消化淀粉研究[D]. 北京:中国农业科学院, 2014.

FU L X. Study on irradiation maize starch preparing slowly digestible starch by heat-moisture treatment [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)

[53] 李学琴, 秦礼康, 朱怡. 挤压膨化与重组造粒茯苓复配谷物产品功能成分分析及淀粉体外消化特性评价. 中国粮油学报2019, 34(9): 104-111.

LI X Q, QIN L K, ZHU Y. Analysis of functional components and evaluation of in vitro starch digestion properties in Poria cocos compound grain products by extrusion and recombinant granulation. Journal of the Chinese Cereals and Oils Association, 2019, 34(9): 104-111. (in Chinese)

[54] VOHRA A, SATYANARAYANA T. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, 2003, 23(1): 29-60.

[55] Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fiber? Nutrition Research Reviews, 2010, 23(1): 65-134.

[56] BUDDRICK O, JONES O A H, CORNELL H J, SMALL D M. The influence of fermentation processes and cereal grains in wholegrain bread on reducing phytate content. Journal of Cereal Science, 2014, 59(1): 3-8.

[57] MARTI A, BOTTEGA G, CRISTINA M, FAORO F, LAMETTI S, PAGANI M A. Dietary fiber enzymatic treatment: A way to improve the rheological properties of high-fiber-enriched dough. International Journal of Food Science & Technology, 2013, 49(1): 305-307.

[58] MESSIA M C, REALE A, MAIURO L, CANDIGLIOTA T, SORRENTINO E, MARCONI E. Effects of pre-fermented wheat bran on dough and bread characteristics. Journal of Cereal Science, 2016, 69: 138-144.

[59] CHEN N J, MORIKAWA J, HASHIMOTO T. Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC. Cryobiology, 2005, 50(3): 264-272.

[60] SIMONATO B, CURIONI A, PASINI G. Digestibility of pasta made with three wheat types: A preliminary study. Food Chemistry, 2015, 174: 219-225.

[61] ZOU W, SISSONS M, GIDLEY M J, GILBERT R G, WARREN F J. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chemistry, 2015, 188: 559-568.

[62] 王睿粲. 豆乳中植酸、钙镁与蛋白质的相互作用及其对蛋白质聚集的影响[D]. 北京: 中国农业大学, 2018.

WANG R C. Interactions among phytate, calcium/magnesium and proteins in soymilk and their effects on protein aggregation [D]. Beijing: China Agricultural University, 2018. (in Chinese)

[63] 任广呜. 热处理对小麦胚芽营养价值的影响. 粮食加工, 1989(1): 32-35.

REN G M. Effect of heat treatment on the nutritional value of wheat germ. Grain Processing, 1989(1): 32-35. (in Chinese)

[64] 徐杰. 发芽糙米淀粉和蛋白的研究及方便米饭的制备[D]. 无锡: 江南大学, 2012.

XU J. Study of starch and protein of germinated brown rice and preparation of its instant rice [D]. Wuxi: Jiangnan University, 2012. (in Chinese)

Effect of Pre-enzymatic-Drum Drying Process on the Quality of Whole Wheat Flakes

YU Ke1,2, LIU Lei2, ZHANG RuiFen2, CHI JianWei2, JIA XuChao2, ZHANG MingWei1,2

(1College of Life Sciences, Yangtze University, Jingzhou 434000, Hubei; 2Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610)

Abstract: 【Objective】The purpose of this study was to explore the effect of pre-enzymatic-drum drying treatment on the quality characteristics of whole wheat groats, which provided a theoretical basis for the processing of high-quality whole wheat groats.【Method】The whole wheat flour was used as raw material, and α-amylase, cellulase and its complex enzyme were used for pre-enzymatic-drum drying to prepare whole wheat flakes: drum-dried whole wheat groats (DWG), drum-dried whole wheat cereal Groats with α-Amylase (DWGA), drum-dried whole wheat groats with cellulase (DWGC), and drum-dried whole wheat groats with α-Amylase and cellulase (DWGAC). The fine wheat flakes were prepared by direct drum drying, namely drum-dried refined wheat Groats (DRG). And then, the flake indexes were determined, such as its rehydration rate, agglomeration rate, water solubility index, water absorption index, gelatinization degree, viscosity, color, starch, reducing sugar, phytic acid content and starch and protein digestion characteristics, to compare and analyze the effect of pre-enzymatic-drum drying process on the quality characteristics of whole wheat flakes. 【Result】The pre-enzymatic-drum drying treatment could significantly improve the brewing properties of whole wheat groats. Among them, DWG sample had the lowest rehydration rate and the DWGAC rehydration rate was the highest. Compared with the control sample DWG, the agglomeration rates of DWGA, DWGC and DWGAC were significantly reduced, respectively. Pre-enzymatic-drum drying treatment significantly improved the solubility of whole wheat groats, with DWGA, DWGC, and DWGAC increasing by 4.98, 2.07, and 5.04 times, respectively, compared to DWG water solubility index. Meanwhile, pre-enzymatic-drum drying treatment significantly reduced the starch and phytic acid content of whole wheat groats (P<0.05), while the reducing sugar content and gelatinization degree increased significantly (P<0.05), and the color of the whole wheat flakes was appropriately reduced. In addition, pre-enzymatic-drum drying treatment significantly increased the proportion of fast-digesting starch in whole-grain tablets, and the content of fast-digesting starch were increased by 22.34%, 34.84% and 46.59%, respectively. Among them, DWGAC had the highest fast-digesting starch content; the in vitro digestibility of the protein were increased by 0.33, 0.25, and 0.26 times, respectively, so the digestibility increased.【Conclusion】The pre-enzymatic-drum drying treatment not only improved the dispersibility of whole wheat groats and reduced the agglomeration rate and viscosity, but also improved the in vitro digestion performance of starch and protein, which enhancing the quality of whole wheat groats.

Key words: whole wheat flakes; pre-enzymatic hydrolysis-drum drying; nutrient digestion characteristics; quality characteristics

收稿日期:2019-08-07;

接受日期:2019-09-29

基金项目:国家重点研发计划(2018YFD0401003,2018YFD0401101-03,2016YFD0400702)、广东特支计划(2019BT02N112)、科技创新战略专项资金(高水平农科院建设)(R2018PY-JC002,201602TD)

联系方式:余可,E-mail:kkyu.kun@outlook.com。通信作者张名位,E-mail:mwzhh@vip.tom.com

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

(责任编辑 赵伶俐)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2025-1-9 10:22

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表