奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 244|回复: 0

调理剂及农艺措施对污染稻田中水稻吸收镉的影响

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60167
发表于 2021-10-11 18:37:09 | 显示全部楼层 |阅读模式
扫码加微信
调理剂及农艺措施对污染稻田中水稻吸收镉的影响
彭鸥1,刘玉玲1,铁柏清1,叶长城1,张淼1,李园星露1,周俊驰1,许蒙1,张燕1,龙涌2

(1湖南农业大学资源环境学院/湖南省灌溉水源水质污染净化工程技术研究中心,长沙 410128;2株洲市渌口区南洲镇农技站,湖南株洲 412107)

摘要:【目的】探究水分管理、调理剂措施和组合措施对污染稻田稻米降Cd效果,旨在探索出不显著降低水稻产量前提下,能更高效降低土壤Cd生物有效性和稻米中Cd含量的方法。【方法】在湖南省株洲市选择中度Cd污染稻田开展田间小区水稻试验。试验中水稻种植两季,早稻品种为中嘉早17,晚稻为泰优390。试验分为6组,分别为水分管理(T2)处理、施用硅肥(T3)处理、施用竹炭处理(T4)、施用硅肥结合水分管理(T5)处理、施用竹炭结合水分管理(T6)处理和1个试验对照(T1),重复3次。【结果】试验各处理对稻田土壤有效态Cd含量均有降低,竹炭结合水分管理(T6)处理对两季水稻土壤均有显著降低,硅肥结合水分管理(T5)处理对晚稻土壤有效态Cd降低幅度最大。试验各处理对水稻各部位Cd含量均有降低效果,在糙米Cd含量方面,5个试验处理中对糙米Cd含量降低幅度以组合措施修复技术效果最好,即硅肥结合水分管理(T5)和竹炭结合水分管理(T6)处理。在水分管理修复技术(T2)中降Cd效果最高为29.23%;在施用调理剂修复技术中,硅肥处理(T3)和竹炭处理(T4)对稻壳和糙米中Cd含量均有显著降低(P<0.05)作用,其中硅肥处理(T3)糙米最高降Cd幅度为49.23%,竹炭处理(T4)糙米最高降Cd幅度为47.69%;在组合措施中均能显著降低水稻糙米Cd含量,其中硅肥结合水分管理(T5)处理糙米降Cd幅度为60.34%—78.46%,竹炭结合水分管理(T6)糙米降Cd幅度为56.90%—67.69%。同时,本文对土壤有效态Cd含量与水稻各部位Cd含量相关性进行分析,发现水稻籽粒(稻壳与糙米)中Cd含量与土壤有效态Cd含量存在极显著正相关(P<0.01),且两个水稻品种规律一致。各处理对水稻各部位富集系数亦有降低效果,以硅肥结合水分管理(T5)处理和竹炭结合水分管理(T6)效果最好。对于水稻各部位向籽粒转运系数降低效果各部位规律不一致,但茎鞘和叶片两个部位向籽粒(稻壳和糙米)转运系数均显著降低,水分管理(T2)处理除外。在水稻产量方面,仅水分管理(T2)处理对中嘉早17有显著降低,其他处理降低幅度不显著,各处理对泰优390处理没有显著影响。【结论】组合措施优于单一水分管理或单一调理剂处理,且在水稻产量没有显著降低情况下对稻米Cd污染稻田稻米降Cd幅度最高达到78.46%,可以进一步确保Cd污染农田安全利用。

关键词:水稻;水分管理;镉;硅肥;竹炭

0 引言
【研究意义】水稻是我国的主要粮食作物之一,近年来,Cd污染问题已成为南方地区突出的粮食安全问题,使粮食产业面临着巨大的挑战。农田土壤重金属Cd主要来源与污水灌溉和重金属超标农药、化肥的施用[1-2]。土壤中Cd主要以Cd2+的形态通过水稻根系进入水稻体内,通过水稻各部位转运作用,最终造成水稻籽粒Cd含量超标[3-4]。如何降低稻米Cd污染,生产安全稻米,是Cd污染地区亟待解决的问题。【前人研究进展】针对这一现状目前在湖南Cd污染稻田主要采用“低Cd品种(variety)+全生育期淹水灌溉(irrigation)+施加生石灰调节土壤酸碱度(pH)+辅助措施(N)”控Cd技术体系[5-8]。同时,前人[9-11]在水分管理进行众多研究,如在水稻孕穗期、抽穗期等关键时期水分管理,全生育期水分管理等,但研究结果均表明全生育期淹水对稻米Cd含量降低效果要好于阶段性水分管理。同时在调理剂方面也有较多报道,其控Cd机理主要分为三大类,一是调节土壤pH,相关研究表明稻米Cd含量与土壤pH呈极显著负相关关系[12];二是钝化土壤中活性Cd,降低土壤有效态Cd含量,减少Cd2+进入水稻体内[13-14];三是吸附或者与Cd2+竞争,占据水稻根系细胞Cd2+吸附位点[15]。调理剂的施用能一定程度降低土壤有效态Cd含量和稻米Cd含量,但未能达到理想效果,且目前报道主要以盆栽试验或室内机理性研究为多,少有进行田间验证性试验。【本研究切入点】本文主要在前人研究基础上,分析比较单一水分管理、单一施用调理剂和组合措施对稻米Cd降低效果,在田间进行验证性试验。【拟解决的关键问题】探索出在不降低水稻的产量前提下,能更高效降低土壤Cd生物有效性和稻米中Cd含量的方法。

1 材料与方法
1.1 试验田与试验材料
试验点位于湖南省株洲市渌口区南洲镇五家桥村(113°19.505′E,27°58.713′N),选取Cd污染田块1丘,约为667 m2。试验实施前按梅花采样法采集试验田块土壤样品,经自然风干后,研磨过100目筛(0.150 mm),测得土壤总Cd浓度为(1.48±0.13)mg·kg-1,有效态Cd含量为(0.82±0.09)mg·kg-1,pH为5.29±0.54,根据GB GB15618-2018和《全国土壤污染状况调查公报》判定为中度镉污染土壤。

试验早稻品种为中嘉早17(常规早稻),晚稻为泰优390(杂交晚稻),均为湖南省农业农村厅推荐镉低积累水稻品种。试验中采用主要调理剂有硅肥(生产于奥斯科工业集团封闭式股份公司(俄罗斯)公司,主要成分为SiO2,Cd含量为0.23 mg·kg-1)、叶面硅肥(生产于郑州正大生物科技有限公司,主要成分为可溶硅、微量元素,未检出Cd含量)、竹炭(生产于浙江省农业科学院,主要成分为C,Cd含量为0.20 mg·kg-1)。

1.2 试验技术与方法
试验采用小区随机排列方法,每个小区间垒田埂,田埂用塑料薄膜覆盖,防止窜水,每个小区间均为单排单灌,小区面积为30 m2,试验设置5种修复技术处理,1个对照处理。对照处理(T1)为按照当地农民的常规栽培管理,即不施用任何土壤改良剂,水分管理为常规管理,即待落干后灌溉,再落干再灌溉直至成熟,水稻育苗参考当地栽培管理技术;水分管理处理(T2)为水稻生长期间,土表始终保持3 cm以上的水层,保持长期的淹水状态,至收获前自然落干;硅肥处理(T3)为水稻移栽前7 d,在试验小区内均匀撒施硅肥,按225 kg·hm-2施用,同时在水稻分蘖末期叶面喷施硅肥,按1.8 kg·hm-2施用;竹炭处理(T4)为水稻移栽前7 d,在试验小区内均匀撒施竹炭,按3 000 kg·hm-2施用;硅肥处理结合水分管理处理(T5)为T2处理和T3处理相结合;竹炭结合水分管理处理(T6)为T2处理和T4处理相结合。试验处理中除施用调理剂措施与水分管理措施外,其余均同对照处理(T1)操作,3次重复。

1.3 样品处理与方法
(1)待水稻成熟后,进行试验样品采集、处理,先用自来水小心洗净根系杂物,然后用去超纯水清洗整个植株,将植株根系、茎鞘、叶、穗分离,稻谷风干后按农业农村部颁标准《米质测定方法》(NY147—88)出糙,分离出糙米和谷壳,其他样品在105℃杀青20 min,70℃烘至恒重,样品粉碎过100目筛,全部装入自封袋内密封保存备用。水稻样品经混合酸(HNO3﹕HClO4=4﹕1)湿法消解、定容后采用ICP-OES直接测定Cd的含量。

(2)研磨风干后的土壤,过0.15 mm的尼龙筛,标记好装入塑料密封袋内保存待用。土壤样品经混合酸HCl-HNO3-HClO4湿法消解、定容后采用ICP-OES直接测定Cd的含量。

(3)土壤有效态Cd,采用DTPA法,用ICP-OES测定含量。

(4)产量测定。分别收获试验田各小区水稻,将水稻用脱粒后,自然风干,计重。

1.4 数据处理及分析
运用IMB SPSS(Statistical Product and Service Solutions, 22.0)对数据进行统计分析处理,运用Microsoft Excel 2010软件对数据进行图表处理。

富集系数(AFA-土)=A器官中重金属含量/土壤中重金属含量;

转运系数(TFA-B)= B器官中重金属含量/A器官中该重金属含量。

2 结果
2.1 调理剂及水分管理对Cd污染稻田土壤有效态Cd含量的影响
在早晚稻试验中,同一试验处理在同一小区上进行。由表1可知,土壤Cd平均含量约1.48 mg·kg-1。水分管理处理(T2)早晚稻两季土壤有效态Cd含量相对于对照处理均没有显著下降(P<0.05)。硅肥处理(T3)能降低土壤有效态Cd含量,但效果不显著。竹炭处理(T4)早稻土壤有效态Cd含量显著降低,晚稻降低效果不显著。竹炭结合水分管理(T6)处理对早晚稻土壤有效态Cd含量均有降低效果,早稻降低了22.22%,晚稻降低了22.61%。但硅肥结合水分管理(T5)处理仅在晚稻有显著降低,降低了30.43%,晚稻降低了17.95%。

表1 Cd污染稻田早、晚稻土壤有效态Cd含量

Table 1 Available cadmium in soils of early and late rice in cadmium-contaminated rice fields


数据后不同小写字母表示处理间差异显著(P<0.05) Different lowercase letters after the data indicate significant differences between treatments (P<0.05)

2.2 调理剂及水分管理对Cd污染稻田水稻各部位Cd含量的影响
2.2.1 对水稻根系、茎鞘、叶片Cd含量的影响 由图1可知,水分管理(T2)处理中水稻根系、茎鞘、叶片Cd含量均低于对照处理(T1),且中嘉早17和泰优390效果一致。两个调理剂处理(T3和T4)均能降低水稻根系、茎鞘和叶片镉含量,两处理间没有显著差异。T5和T6两个处理,均能降低中嘉早17和泰优390根系、茎鞘、叶片中Cd含量,且降低量均在20%以上。综合所述,5个试验处理均能降低水稻根系、茎鞘、叶片Cd含量,但T5和T6处理对各部位Cd含量降低效果显著优于其他处理。

width=381.7,height=324.55
图中小写字母表示处理间差异显著(P<0.05)。下同

The difference between treatments was marked by lowercase letters (P<0.05). The same as below

图1 调理剂及水分管理对Cd污染稻田水稻根系、茎鞘和叶片Cd含量的影响

Fig. 1 Effects of conditioning agents and water management on Cd contents of rice roots, stem sheaths and leaf in Cd-contaminated paddy fields

2.2.2 对稻米Cd含量的影响 由图2可知,水分管理(T2)处理使得中嘉早17稻壳和糙米Cd含量分别降低了27.85%和20.69%,其中稻壳Cd含量相对于对照而言降低效果显著(P<0.05)。水分管理(T2)使得泰优390稻壳和糙米Cd含量分别降低了28.38%和29.23%,且降低效果相对于对照均显著(P<0.05)。硅肥处理(T3)和竹炭处理(T4)降低效果最好,对稻壳和糙米均有显著降低(P<0.05),且中嘉早17和泰优390结果一致。在硅肥处理(T3)中,中嘉早17稻壳和糙米Cd含量分别降低了46.84%和39.66%,泰优390稻壳和糙米Cd含量分别降低了48.65%和49.23%。在竹炭处理(T4)中,中嘉早17稻壳和糙米Cd含量分别降低了43.04%和37.93%,泰优390稻壳和糙米Cd含量分别降低了39.19%和47.69%。2个组合处理中,均能显著降低2个水稻品种稻壳和糙米Cd含量(P<0.05),且降低率均在50%以上,其中竹炭+水分管理(T6)使中嘉早17糙米Cd含量达到0.25 mg·kg-1,降低率为56.90%,使泰优390糙米Cd含量达到0.21 mg·kg-1,降低率为52.70%。硅肥结合水分管理(T5)能使中嘉早硅肥结合水分管理(T5)能使中嘉早硅肥结合水分管理(T5)能使中嘉早硅肥结合水分管理(T5)能使中嘉早硅肥结合水分管理(T5)能使中嘉早硅肥结合水分管理(T5)能使中嘉早17糙米Cd含量最低值达到0.19 mg·kg-1,使泰优390糙米Cd含量平均值达0.14 mg·kg-1。综合所述,水分管理和调理剂处理均能一定程度降低稻壳和糙米Cd含量,但两个组合处理(T5和T6)降低量最大,效果最好。

2.3 稻田土壤有效态Cd含量与水稻各部位Cd含量相关性分析
由表2可知,对于中嘉早17而言,水稻稻壳和糙米Cd含量与土壤有效态Cd含量呈正线性相关,且相关性极显著(P<0.01),根系和叶片Cd含量与土壤有效态Cd含量呈正线性相关,且相关性显著(P<0.05),茎鞘与土壤有效态Cd含量相关性不显著。对于泰优390而言,水稻稻壳和糙米Cd含量与土壤有效态Cd含量与中嘉早17一致,呈正线性相关,且相关性极显著(P<0.01),根系和茎鞘Cd含量与土壤有效态Cd含量呈正线性相关,且相关性显著(P<0.05),叶片与土壤有效态Cd含量相关性不显著。

width=371.3,height=331.35
图2 调理剂及水分管理对Cd污染稻田水稻籽粒Cd含量的影响

Fig. 2 Effects of conditioning agents and water management on Cd content in rice grains of Cd-contaminated rice fields

2.4 调理剂及水分管理对Cd污染稻田Cd富集系数与转运系数的影响
2.4.1 对Cd富集系数的影响 由表3可知,5个试验处理对水稻各部位Cd富集系数有不同的效果。水分管理(T2)处理对中嘉早17和泰优390号2个品种根系Cd富集系数没有显著影响,但茎鞘、稻壳的Cd富集系数与对照(T1)相比均差异显著。在两个调理剂处理中,施用硅肥(T3)处理对水稻根系、茎鞘、叶片、稻壳和糙米的Cd含量均有显著降低效果,中嘉早17和泰优390效果一致,施用竹炭(T4)处理对两个水稻品种中嘉早17和泰优390仅稻壳和糙米效果同时显著,对根系、茎鞘和叶片富集系数一定程度降低。2个组合处理(T5和T6)对两个水稻品种均只有叶片富集系数相对于对照效果不显著,其余各部位均有显著效果。综合所述,2个组合处理降低水稻各部位富集系数效果优于调理剂处理和水分管理处理。

表2 稻田土壤有效态Cd含量与水稻各部位Cd含量相关性

Table 2 Correlation between available Cd content in paddy soil and Cd content in various parts of rice


样品n=18,**表示在0.01水平(双侧)上显著相关,*表示在0.05水平(双侧)上显著相关

Sample n=18, ** Indicates significant correlation at 0.01 level (both sides), * Indicates significant correlation at 0.05 level (two sides)

表3 调理剂及水分管理对Cd污染稻田Cd富集系数的影响

Table 3 Effects of conditioning agents and water management on rice enrichment factors in Cd- contaminated paddy fields


2.4.2 对Cd转运系数的影响 由表4可知,5个试验处理对水稻各部位Cd转运系数有一定差异。水分管理(T2)处理效果好于对照处理(T1),中嘉早17和泰优390规律一致。2个调理剂处理中,施用硅肥处理(T3)对中嘉早17水稻各部位转运系数均有显著效果,根系向茎鞘转运系数除外,泰优390效果与中嘉早17一致。施用竹炭(T4)处理对中嘉早17效果与施用硅肥处理(T3)效果一致,对于泰优390仅茎鞘向叶片转运系数不显著,其他转运系数均有显著变化。2个组合处理(T5和T6)中对根系向茎鞘和茎鞘向叶片转运没有显著影响,对茎鞘向籽粒和叶片向籽粒均有较好效果,两个水稻品种效果一致。综上所述,在阻控各部位Cd向籽粒转运中,组合处理效果最好。

表4 调理剂及水分管理对Cd污染稻田Cd转运系数的影响

Table 4 Effects of conditioning agents and water management on rice transport coefficient in Cd-contaminated rice fields


2.5 调理剂及水分管理对Cd污染稻田水稻产量的影响
由图3可知,试验中5个处理的中嘉早17产量相对于对照处理(T1)有一定变化,水分管理(T2)处理产量下降7.00%,施用硅肥(T3)处理产量增加2.97%,其余3个处理产量均一定程度下降,但效果不显著。对于泰优390而言,5个试验处理相对于对照均没有显著变化,产量在8 200 kg·hm-2上下波动。综合而言,水分管理处理会使得水稻产量下降,但在结合硅肥或者竹炭后产量有所上升,但上升效果不显著。

3 讨论
降低水稻籽粒中Cd含量主要是两种途径,一是降低土壤中Cd生物有效性,将活性Cd钝化为络合物或螯合物[16];二是阻控水稻各部位向籽粒转运,有研究指出水稻根系吸收到籽粒Cd积累要经过3个过程:根系的活化和吸收、木质部的装载和运输以及韧皮部向籽粒中的进一步转移[17-18]。根系向地上部转运是水稻籽粒积累Cd主要来源[19],阻控水稻对Cd的吸收或被吸收后阻止Cd向地上部转运,可以一定程度降低籽粒Cd含量。

水分管理能降低Cd污染土壤生物有效性以及持续性淹水则能调控水稻Cd共质体转运[20]。研究认为持续性淹水效果优于水稻生育阶段性淹水,淹水主要是通过下调水稻根系Os LCD和Os Nramp1的基因相对表达量,降低了水稻对Cd的吸收[21]。水稻水分管理中全生育期淹水水稻根表铁膜量要高于间歇性淹水,而水稻根表铁膜能有效阻控Cd2+进入水稻体内[22]。水稻田在长期淹水条件下,土壤体系处于还原环境,使得Fe2+、Mn2+等金属离子与Cd2+的竞争吸附作用以及与S2-和Cd2+共沉淀作用加强[23]。纪雄辉等[11]证实持续性淹水处理能降低水稻籽粒中Cd含量。本试验水分管理糙米Cd含量降低了29.23%,但仍远远未达到国家安全食用标准(GB2762—2012),因此本研究将水分管理与调理剂进行组合,研究组合处理降低糙米Cd含量效果。同时,杨定清等[24]研究表明持续性淹水水稻产量显著下降,其原因主要是稻田长期处于淹水状态,会导致无效分蘖增加,从而导致水稻产量降低。其次,长期淹水条件下,叶片蒸腾速率高,光合速率潜力不能得到充分发挥,水稻产量也会降低。本研究相比于对照处理(T1)水分管理处理(T2)使中嘉早17产量显著降低,但对泰优390没有显著影响,这说明水分管理下产量变化与水稻品种有一定关联。

width=377.9,height=162.95
图3 调理剂及水分管理对Cd污染稻田水稻产量的影响

Fig. 3 Effects of conditioning agents and water management on rice yield in Cd-contaminated paddy fields

本试验中选用2种土壤调理剂,主要分为含硅元素和生物炭。生物炭和硅肥的施用对水稻Cd的转运系数降低效果不显著,但使得富集系数降低效果显著,主要是由于将土壤中活性镉钝化[25-26]。硅元素通过影响水稻根系分泌以及土壤微生物来提升土壤pH,而提升pH能使得土壤Cd和有效态Cd含量降低[27-28]。另外,土壤中的有效硅能与土壤中有效态Cd形成聚硅酸凝胶的Cd-Si复合物,从而降低土壤Cd的有效性[29]。本研究中基施矿物硅肥结合叶面硅肥处理,对稻米Cd阻控有较好的效果,单一施用硅肥(T3)糙米Cd含量最高下降了49.23%,而本研究中硅肥结合淹水处理(T5)使得糙米Cd含量最高降低了78.46%,达到或接近国家安全食用标准。硅降低稻米Cd含量主要有两种方式,一是钝化土壤中活性Cd,形成Si-Cd聚合物,阻止Cd2+进入水稻根系;二是抑制水稻体内Cd向地上部转运,降低籽粒Cd含量[7]。因此,本试验在分蘖末期喷施适量的叶面硅肥,能有效控制Cd向稻穗转移,在基施硅肥的基础上降低稻米Cd超标的风险。生物炭可以增加土壤中有机碳含量,形成土壤团聚体[30],土壤中Cd2+与有机质发生反应,降低其生物有效性[31],同时有研究表明Cd2+与生物炭的离子交换作用、络合反应以及阳离子-π键等作用能有效降低土壤有效态Cd含量[32-33],生物炭能迅速提升土壤pH也是降低其生物有效性原因之一[34]。本研究选择施用竹炭同时结合全生育期水分管理(T6),在施用硅肥的条件下结合全生育期淹水再在分蘖期辅以喷施叶面肥(T5)处理能更有效降低土壤中Cd的生物有效性,且效果优于单一调理剂处理和水分管理,使得糙米中Cd含量达到或接近国家安全食用标准。对于水稻产量方面,两个试验处理均对水稻产量没有显著降低,相比于单一水分管理处理水稻产量略有提升,但其机理有待进一步研究。

李超等[35]研究认为水稻各器官Cd含量与土壤Cd有效性呈极显著正相关关系,本试验中当土壤有效态Cd降低时,稻米中各器官Cd含量亦随之降低,且水稻稻壳与糙米Cd含量与土壤有效态Cd含量呈极显著正线性相关(P<0.01)。水稻对Cd的富集系数与转运系数的大小与水稻籽粒Cd含量密切相关[36],本研究中各试验处理富集系数均有降低,组合处理降低效果均显著,但转运系数效果不显著,说明试验中各处理主要是钝化了土壤活性镉,降低水稻吸收镉离子,从而降低水稻籽粒Cd含量。

值得指出的是,组合措施中两个处理(T5和T6)在保证水稻产量的前提下能大幅度降低稻米中Cd含量,T5处理最低值为0.09 mg·kg-1,T6处理最低值为0.13 mg·kg-1,但仍存在超标风险,建议在下阶段研究中根据不同土壤类型及土壤污染程度对调理剂施用量与水分管理进行优化组合,使得中轻度Cd污染耕地可以更安全利用。

4 结论
5个试验处理对稻田土壤有效态Cd含量、水稻各部位Cd含量、水稻各部位富集系数、水稻转运系数均有降低效果。硅肥结合水分管理(T5)和竹炭结合水分管理(T6)对Cd污染稻田稻米降Cd效果最好,其中T5处理效果优于T6处理。在水稻产量方面,水分管理(T2)处理对中嘉早17有显著降低,其他处理降低幅度不显著,各处理对泰优390产量没有显著影响。同时,研究认为水稻籽粒Cd含量与土壤有效态Cd含量呈极显著正线性相关(P<0.01)。

References

[1] YI K X, WANG F , CHRN J Y, JIANG S H, HUANG S J, PENG L ZENG QING R, LUO S. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province, China. Science of the Total Environment, 2018, 634: 67-76.

[2] 庞荣丽, 王瑞萍, 谢汉忠, 郭琳琳, 李君. 农业土壤中镉污染现状及污染途径分析. 天津农业科学, 2016, 22(12): 87-91.

PANG R L, WANG R P, XIE H Z, GUO L L, LI J. Analysis of cadmium pollution in agricultural soils and analysis of its aay of pollution. Tianjin Agricultural Science, 2016, 22(12): 87-91. (in Chinese)

[3] LI H , LUO N , LI Y W,CAI Q Y, LI H Y, MO C H, WONG M H. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 2017, 224: 622-630.

[4] 喻华, 上官宇先, 涂仕华, 秦鱼生, 陈琨, 陈道全, 刘前聪. 水稻籽粒中镉的来源. 中国农业科学, 2018, 51(10): 1940-1947.

YU H, SHANGGUAN Y X, TU S H, QIN Y S, CHEN K, CHEN D Q, LIU Q C. Sources of cadmium accumulated in rice grain. Scientia Agricultura Sinica, 2018, 51(10): 1940-1947. (in Chinese)

[5] MENG J , ZHONG L B , WANG L , LIU X M, TANG C X, CHEN H J, XU J M. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environmental Science and Pollution Research, 2018, 25(9): 8827-8835.

[6] 史磊, 郭朝晖, 梁芳, 彭驰, 肖细元, 封文利. 水分管理和施用石灰对水稻镉吸收与运移的影响. 农业工程学报, 2017, 33(24): 111-117.

SHI L, GUO Z H, LIANG F, PENG C, XIAO X Y, FENG W L. Effects of lime and water management on uptake and translocation of cadmium in rice. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 111-117. (in Chinese)

[7] 谢晓梅, 方至萍, 廖敏, 黄宇, 黄小辉. 低积累水稻品种联合腐殖酸、海泡石保障重镉污染稻田安全生产的潜力. 环境科学, 2018(9): 4348-4358.

XIE X M, FANG Z P, LIAO M, HUANG Y, HUANG X H. Potential to ensure safe production from rice fields polluted with heavy cadmium by combining a rice variety with low cadmium accumulation, humic acid, and sepiolite. Environmental Science, 2018(9): 4348-4358. (in Chinese)

[8] 杨小粉, 刘钦云, 袁向红, 吴勇俊, 郑海飘, 聂凌俐, 李翊君, 张文, 敖和军. 综合降镉技术在不同污染程度稻田土壤下的应用效果研究. 中国稻米, 2018, 24(2): 37-41.

YANG X F, LIU Q Y, YUAN X H, WU Y J, ZHENG H P, NIE L L, LI Y J, ZHANG W, AO H J. Effects of VIP technology on reducing cadmium under different cadmium pollution degree paddy soil. Chinese Rice, 2018, 24(2): 37-41. (in Chinese)

[9] WAN Y N, CAMATA A Y, YU Y, GUO T L, ZHU L N, LI H F. Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements. Environmental Pollution, 2018, 240: 523-533.

[10] 李园星露, 叶长城, 刘玉玲, 李丹阳, 刘寿涛, 罗海艳, 刘孝利, 铁柏清, 孙健. 硅肥耦合水分管理对复合污染稻田土壤As-Cd生物有效性及稻米累积阻控. 环境科学, 2018(2): 944-952.

LI Y X L, YE C C, LIU Y L, LI D Y, LIU S T, LUO H Y, LIU X L, TIE B Q, SUN J. Bioavailability of silicon fertilizer coupled water management on soil bioavailability and cumulative control of rice in compound contaminated paddy soils. Environmental Science, 2018(2): 944-952.(in Chinese)

[11] 纪雄辉, 梁永超, 鲁艳红, 廖育林, 聂军, 郑圣先, 李兆军. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理. 生态学报, 2006, 27(9): 3930-3939.

JI X H, LIANG Y C, LU Y H, LIAO Y L, NIE J, ZHENG S X, LI Z J. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil. Acta Ecologica Sinica, 2006, 27(9): 3930-3939. (in Chinese)

[12] 王梦梦, 何梦媛, 苏德纯. 稻田土壤性质与稻米镉含量的定量关系. 环境科学, 2018, 39(4): 1918-1925.

WANG M M, HE M Y, SU D C. Quantitative relationship between paddy soil properties and cadmium content in rice grains. Environmental Sciences, 2018, 39(4): 1918-1925.(in Chinese)

[13] YANG Y J, CHEN J M, HUANG Q N, TANG S Q, WANG J L, HU P S, SHAO G S. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Chemosphere, 2018, 193: 547-556.

[14] SANCHEZ-FLORES N, SOLACHE M, OLGUIN M T, FRIPIAT J J, PACHECO-MALAGIN G, SANIGER J M, BULBULIAN S. Selectivity of the Cd2+/Ca2+ exchange on modified rice hull silica. Environmental Technology, 2009, 30(3): 269-275.

[15] 徐胜光, 周建民, 刘艳丽, 陈能场, 谢志宜. 硅钙调控对酸矿水污染农田水稻镉含量的作用机制. 农业环境科学学报, 2007, 26(5): 1854-1859.

XU S G, ZHOU J M, LIU Y L, CHEN N C, XIE Z Y. Regulative mechanism of silicon and calcium on the cadmium content of rice in the farmland polluted by acidic mine water Journal of Agro- Environmental Science, 2007, 26(5): 1854-1859. (in Chinese)

[16] HOU D D, WANG R Z , GAO X Y, WANG K, LIN Z, GE J, LIU T, WEI S, CHEN W K, XIE R H, YANG X E, LU L L,TIAN S K. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Environmental Pollution, 2018, 241: 63-73.

[17] YONEYAMA T, GOSHO T, KATO M, GOTO S, HAYASHI H. Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd contaminated soil. Soil Science and Plant Nutrition, 2010, 56(3): 445-453.

[18] URAGUCHI S, FUJIWARA T. Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 2013, 16(3): 328-334.

[19] HAO X H, ZENG M, WANG J, ZENG Z W, DAI J L, XIE Z J, YANG Y Z, TIAN L F, CHEN L B, LI D P. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers in Plant Science, 2018, 9: 476-489.

[20] 陈江民, 杨永杰, 黄奇娜, 胡培松, 唐绍清, 吴立群, 王建龙, 邵国胜. 持续淹水对水稻镉吸收的影响及其调控机理. 中国农业科学, 2017, 50(17): 3300-3310.

CHEN J M, YANG Y J, HUANG Q N, HU P S, TANG S Q, WU L Q, WANG J L, SHAO G S. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310. (in Chinese)

[21] RODDA M S, REID R J. Examination of the role of iron deficiency response in the accumulation of Cd by rice grown in paddy soil with variable irrigation regimes. Plant & Soil, 2013, 371(1/2): 219-236.

[22] NAKANISHI H, OGAWA I, ISHIMARU Y, MORI S, NISHIZAWA N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OSIRT2 in rice. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.

[23] LI J, XU Y. Use of clay to remediate cadmium contaminated soil under different water management regimes. Ecotoxicology and Environmental Safety, 2017, 141: 107-112.

[24] 杨定清, 雷绍荣, 李霞, 周娅, 罗丽卉, 李旭毅. 大田水分管理对控制稻米镉含量的技术研究. 中国农学通报, 2016, 32(18): 11-16.

YANG D Q, LEI S R, LI X, ZHOU Y, LUO L H, LI X Y. Controlling cadmium concentration in rice by field water management technology. Chinese Agricultural Science Bulletin, 2016, 32(18): 11-16. (in Chinese)

[25] 张燕, 铁柏清, 刘孝利, 张淼, 叶长城, 彭鸥, 许蒙. 玉米秸秆生物炭对稻田土壤砷、镉形态的影响. 环境科学学报, 2018, 38(2): 715-721.

ZHANG Y, TIE B Q, LIU X L, ZHANG M, YE C C, PENG O, XU M. Effects of waterlogging and application of bio-carbon from corn stalks on the physicochemical properties and the forms of arsenic and cadmium in arsenic and cadmium-contaminated soils. Acta Scientiae Circumstantiae, 2018, 38(2): 715-721. (in Chinese)

[26] 陈喆, 张淼, 叶长城, 毛懿德, 周细红, 雷鸣, 魏祥东, 铁柏清. 富硅肥料和水分管理对稻米镉污染阻控效果研究. 环境科学学报, 2015, 35(12):4003-4011.

CHEN Z, ZHANG M, YE C C, MAO Y D, ZHOU X H, LEI M, WEI X D, TIE B Q. Mitigation of Cd accumulation in rice ( Oryza sativa L.) with Si fertilizers and irrigation managements. Acta Scientiae Circumstantiae, 2015, 35(12): 4003-4011. (in Chinese)

[27] ZHANG P B, LIU Y Q, BOCHARNIKOVA E A, MATICHENKOW V V, KHOMIAKOV D M, PAKHNENKO E P. Effect of amorphous silicon dioxide on cadmium behavior in the soil–rice plant system. Moscow University Soil Science Bulletin, 2018, 73(1): 34-38.

[28] YU H Y, DING X, LI F B, WANG X Q, ZHANG S R, YI J C, LIU C P, XU X H, WANG Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Environmental Pollution, 2016, 215: 258-265.

[29] GUO L, CHEN A T, HE N, YANG D, LIU M D. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes. Journal of Soils and Sediments, 2018, 18(4): 1691-1700.

[30] 徐国鑫, 王子芳, 高明, 田冬, 黄蓉, 刘江, 黎嘉成. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响. 环境科学, 2018, 39(1): 355-362.

XU G X, WANG Z F, GAO M, TIAN D, HUANG R, LIU J, LI J C. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration. Environmental science, 2018, 39(1): 355-362. (in Chinese)

[31] GAO J K, LV J L, WU H M, DAI Y C, NASIR M. Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium- contaminated soils: Insights from fluorescence spectroscopy and environmental implications. Chemosphere, 2018, 193: 1027-1035.

[32] 王震宇, 刘国成, Monica Xing, 李锋民, 郑浩. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性. 环境科学, 2014(12): 4735 -4744.

WANG Z Y, LIU G C, MONICA X, LI F M, ZHENG H. Adsorption of Cd (Ⅱ) varies with biochars derived at different pyrolysis temperatures. Environmental Science, 2014(12): 4735-4744. (in Chinese)

[33] USMAN A, SALLAM A, ZHANG M, VITHTHIKA M, AHMAD M, AL-FARRAJ A, OK Y S, ABDULJABBAR A, AL-WABEL M. Sorption process of date palm biochar for aqueous Cd (II) removal: efficiency and mechanisms. Water, Air & Soil Pollution, 2016, 227(12): 449-464.

[34] 张华纬, 甄华杨, 岳士忠, 张慧琦, 乔玉辉. 水稻秸秆生物炭对污染土壤中镉生物有效性的影响. 生态环境学报, 2017, 26(6): 1068-1074.

ZHANG H W, ZHEN H Y, YUE S Z, ZHANG H Q, QIAO Y H. Bioavailability of Cd in contaminated soil after short-term application of rice straw biochar. Ecology and Environmental Sciences, 2017, 26(6): 1068-1074. (in Chinese)

[35] 李超, 艾绍英, 唐明灯, 李林峰, 王艳红, 李义纯. 矿物调理剂对稻田土壤镉形态和水稻镉吸收的影响. 中国农业科学, 2018, 51(11): 2143-2154.

LI C, AI S Y, TANG M D, LI L F, WANG Y H, LI Y C. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice. Scientia Agricultura Sinica, 2018, 51(11): 2143-2154. (in Chinese)

[36] 周静, 杨洋, 孟桂元, 马国辉,陈艳艳. 不同镉污染土壤下水稻镉富集与转运效率. 生态学杂志, 2018, 37(1): 89-94.

ZHOU J, YANG Y, MENG G Y, MA G H, CHEN Y Y. Cadmium accumulation and translocation efficiency of rice under different cadmium-polluted soils. Chinese Journal of Ecology, 2018, 37(1): 89-94. (in Chinese)

Effects of Conditioning Agents and Agronomic Measures on Cadmium Uptake by Rice in Polluted Rice Fields

PENG Ou1, LIU YuLing1, TIE BaiQing1, YE ChangCheng1, ZHANG Miao1, LI YuanXingLu1, ZHOU JunChi1, XU Meng1, ZHANG Yan1, LONG Yong2

(1College of Resources and Environment, Hunan Agricultural University/Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128; 2Agricultural Technology Service Station, Nanzhou Town, Lukou District, Zhuzhou 412107, Hunan)

Abstract: 【Objective】How to safely use cadmium (Cd) to prevent it from contaminating cultivated land to produce up to standard rice is a hot topic for scholars. This paper mainly explored the effects of water management, conditioning agent measures and combined measures on the Cd reduction of rice in polluted rice fields. It aimed to reduce the bioavailability of soil Cd and the Cd content in rice under the premise of not significantly reducing rice yield【Method】Field rice experiments were carried out in a moderately Cd-contaminated paddy field in Zhuzhou City, Hunan Province, through a field plot test. In the experiment, rice was planted for two seasons. The early rice variety was Zhongjiazao17, and the late rice variety was Taiyou390. The test setup design was divided into 6 groups, namely water management treatment (T2), application of silicon fertilizer treatment (T3), application of bamboo charcoal treatment (T4), application of silicon fertilizer combined with water management treatment (T5), application of bamboo charcoal combined with water management treatment (T6), and control (T1), and each treatment was repeated 3 times.【Result】The effective Cd content in the paddy soil was reduced by the treatments. The bamboo charcoal combined with water management treatment (T6) significantly reduced the soil moisture in the two rice grow seasons. The silicon fertilizer combined with water management treatment (T5) had the largest reduction of available cadmium in the late rice soil. The treatments all had the effect of reducing the Cd content in all parts of rice. In the aspect of cadmium content of brown rice, the reduction of Cd content in brown rice in the five experimental treatments was the best in combination with the repair technology, namely silicon fertilizer combined with water management treatment (T5). Combined with carbon and water management (T6), in the water management and repair technology, the water management in the whole growth period has the best Cd effect, the highest reduction was 29.23%; in the application of conditioning agent repair technology, silicon fertilizer treatment (T3) and bamboo charcoal treatment (T4) significantly reduced rice husks and brown rice (P<0.05). Under the silicon fertilizer treatment (T3), brown rice had the highest Cd amplitude of 49.23%; under the bamboo charcoal treatment (T4), brown rice had the highest Cd amplitude of 47.69%. In the treatment technology, the Cd content of rice brown rice could be significantly reduced. The silicon fertilizer combined with water management treatment (T5) of brown rice decreased Cd range from 60.34% to 78.46%, and bamboo charcoal combined with water management (T6) brown rice decreased Cd range from 56.90% to 67.69%. At the same time, this paper analyzed the correlation between soil available cadmium content and cadmium content in various parts of rice, and found that there was very significant positive correlation between rice grain (rice husk and brown rice) and soil available cadmium content (P<0.01), and two rice varieties were consistent. The treatments also had the effect of reducing the enrichment coefficient of various parts of rice, and the best results were obtained by silicon fertilizer combined with water management treatment (T5) and carbon combined water management (T6). Regarding the effect of reducing the rice-to-grain transfer coefficients from different parts of the rice, the rules were inconsistent, but the transfer coefficients of the stalk sheaths and leaves to the grains (rice hulls and brown rice) were significantly reduced, except for water management (T2) treatment. In terms of rice yield, only water management treatment (T2) significantly reduced yield of Zhongjiazao17, and the other treatments did not decrease significantly. Each treatment had no significant effect on Taiyou390.【Conclusion】The combination measures were better than single water management or single conditioner treatment, and the maximum Cd drop in rice Cd-contaminated rice fields reached 78.46% when rice yield was not significantly reduced, which could further ensure the safe use of Cd-contaminated farmland.

Key words: rice; water management; cadmium; silicon fertilizer; bamboo charcoal

收稿日期:2019-04-25;

接受日期:2019-09-12

基金项目:国家重点研发计划(2017YFD0801505)、湖南省科技计划项目重点研发计划项目(2016NK2017)、长沙市科技计划项目(kq1801025)

联系方式:彭鸥,Tel:18508424171;E-mail:hanhexiaou@foxmail.com。通信作者铁柏清,Tel:13507454906;E-mail:tiebq@qq.com

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

(责任编辑 李云霞)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2025-1-9 23:28

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表