奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 212|回复: 0

江淮地区一次冰雹过程的双线偏振雷达观测分析

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60167
发表于 2021-9-29 16:08:56 | 显示全部楼层 |阅读模式
扫码加微信
江淮地区一次冰雹过程的双线偏振雷达观测分析*
杨 吉 郑媛媛 徐 芬

中国气象局交通气象重点开放实验室/江苏省气象科学研究所/南京气象科技创新研究院,南京,210009

摘 要 为了进一步认识冰雹和三体散射的双线偏振雷达观测特征,提高业务预警能力和奠定基于双线偏振雷达的地面降雹识别基础,利用南京双线偏振雷达观测资料,统计分析了2019 年3 月20 日冰雹过程发展、成熟和降雹阶段的观测特征及微物理过程。结果表明:(1)雹暴在成熟阶段具有高悬的强回波中心和较高的顶高,强回波中心差分反射率ZDR<-0.5 dB,相关系数(ρhv)约为0.9,由于冰雹后向散射相位的影响,该区域比差分相位(KDP)呈现负值,指示了该区域有冰雹存在,并被相态分类算法(HCA)正确识别;(2)降雹阶段,高层反射率因子减小,强回波中心下降到地面附近,融化层以下ρhv 增大,指示高层下落的冰相粒子整体尺寸减小;HCA 识别到冰雹开始减少时,地面观测到冰雹;(3)三体散射的反射率因子(ZH)、ρhv 和反射率因子标准差(SD(ZH))概率密度分布与北美三体散射比较接近;ZDR 分布更偏向于负值区域,差分相位标准差(SD(φDP))分布范围大约是北美结果的2 倍。

关键词 冰雹, 双线偏振雷达, 三体散射

1 引 言
雹暴是产生冰雹的强对流系统,具有严重的致灾性,其造成的强冰雹威胁人民生命财产安全,影响农业、交通、建筑物和工业生产。因此,诸多学者从雹暴的空间分布、日变化、数值模拟、中尺度特征等方面进行了细致深入的研究(许焕斌等,1988,2001;何文英等,2006;俞小鼎,2014;李聪等,2017;范皓等,2019;赵文慧等,2019;曾智琳等,2019)。事实上,雹暴是一个快速发展的过程,一次降雹过程的持续时间一般为几分钟(赵文慧等,2019)。常规观测资料很难捕捉到雹暴过程的演变,而业务布设的多普勒天气雷达网具有高时、空分辨率的特点,雷达探测资料为冰雹研究提供了基础条件。王研峰等(2019)利用天气雷达探测资料研究了甘肃一次强雹暴的回波特征,发现这次过程的雷达探测资料上有明显的“V”型缺口、有界弱回波区和回波悬垂。徐芬等(2016)研究江苏一次强冰雹过程时发现,强对流系统移入雷达站上空时,螺旋度和风垂直切变逐渐增强,同时也发现三体散射等典型特征。雷达资料不仅被用来研究回波结构特征,还能依赖于回波结构特征的经验关系实现自动识别冰雹。具有代表性的方法是WSR-88D 雷达的冰雹预警指数,主要是利用45 dBz 反射率因子高度与0℃、-20℃高度层的差异建立冰雹发生概率函数(王莎等,2019)。吴林林等(2014)基于安徽的观测资料对该方法进行了本地化调整,获取更适合该地区的冰雹预警经验关系。此外,学者们发展了基于多个雷暴参数的模糊逻辑冰雹预警方法(张秉祥等,2014),以及人工智能冰雹识别及临近预报方法(张文海等,2019)。虽然基于多普勒雷达的冰雹预警方法具有一定的成功率,但因为多普勒雷达观测信息的限制,这些研究和预警方法只能依赖回波结构进行。很难开展更加深入的微物理特征研究,以及进一步提高冰雹预警成功率。

近年来,中国较多S 波段多普勒雷达升级为双线偏振雷达。不仅提供反射率因子(ZH)、径向速度和谱宽,还提供差分反射率(ZDR)、比差分相位(KDP)和相关系数(ρhv)。这些变量可以用来分析雷暴中的水凝物粒子相态、浓度、大小和形状等信息,并进一步推测潜在的微物理过程。刘黎平等(1992)研究发现,由于取向较为固定的非球形冰雹区ZDR 往往小于0,ZDR 减小是降雹的前兆。Hubbert等(1998)利用CHILL 雷达分析了一次强降雹过程,发现高退偏振比(LDR)(≥-18 dB),负 ZDR(≤-0.5 dB)和低 ρhv(≤0.93)能够比较容易地区分高尔夫球大小的冰雹时间段。曹俊武等(2006)利用美国KOUN 双线偏振雷达探测资料建立模糊逻辑识别冰雹方法。Depue 等(2007)评估了冰雹识别参量(HDR)对冰雹的识别能力,发现21 dB 和31 dB能够合理识别大冰雹和破坏性冰雹,临界成功指数大约为0.77。苏德斌等(2011)根据不同降雨类型的观测资料建立ZH-ZDR 分布特征,在此基础上定义本地化的HDR,并验证了其识别效果。马建立等(2012)讨论了冰雹识别参量HDR 在X 波段雷达中的应用,发现雨区衰减导致HDR 识别冰雹不准确。Wu 等(2018)利用广东地面观测降雹对比分析了美国业务相态分类算法(HCA,Hydrometeor Classification Algorithm)对冰雹的识别效果。尽管已有较多基于双偏振雷达的冰雹过程研究,但是对中国冰雹过程的S 波段双线偏振雷达观测特征分析及相关微物理过程研究还比较少。

文中利用南京2019 年升级的S 波段双线偏振雷达探测资料分析了2019 年3 月20 日的冰雹过程,主要分析冰雹和由冰雹引起的三体散射观测特征,讨论冰雹相关微物理过程,并就该次过程分析HCA 方法识别江淮地区冰雹的能力。

2 资料和方法
资料主要使用南京2019 年升级的S 波段业务双线偏振雷达2019 年3 月20 日06—15 时的观测资料,径向分辨率250 m,方位分辨率0.93°,采用双发双收的工作模式可得到包括ZH、ZDR、KDP 和ρhv等观测变量。

数据质量是结果可靠的前提,文中对双线偏振雷达资料进行以下两点质量控制:(1)利用微雨法订正ZDR 系统偏差,具体方法见胡志群等(2014),共选取28964 个样本点,统计得到ZDR 的系统偏差为-0.90 dB (图 1),φDP 经过去初相位,去折叠后利用最小二乘拟合重算 KDP(Wang,et al,2009);(2)采用美国国家大气研究中心提供的REORDER 软件将质量控制后的基数据插值到笛卡尔坐标系,插值后水平和垂直分辨率分别是1 和0.5 km。采用Steiner 等(1995)提出的对流分类方法,在 3 km 高度的格点数据上分出对流云降水和层云降水。

pagenumber_ebook=23,pagenumber_book=570
图 1 微雨区ZDR 概率密度分布
Fig. 1 Probability density distribution of ZDR for light rain

相态分类采用Park 等(2009)提出的模糊逻辑方法,利用 ZH、ZDR、KDP、ρhv、反射率因子标准差(SD(ZH))和差分相位标准差(SD(φDP))作为输入,输出雨和冰雹混合物(RH)、大雨(HR)、雨(RN)、大雨滴(BD)、霰(GR)、冰晶(CR)、湿雪(WS)、干雪(DS)、生物回波(BS)和地物(GC/AP)10 种分类结果。相态分类法主要逻辑是为每一个相态类别的输入变量设计隶属梯形函数,输入变量通过该函数进行计算后得到不同相态类别的概率值,通过加权平均后得到的最大概率值类别即为该扫描体积的相态分类结果。

3 冰雹的双偏振雷达特征分析
3.1 环境背景
2019 年3 月20 日,南京地区出现雷雨天气,江宁、六合等19 个县出现8 级以上阵风,溧水区观测到1 cm 直径的冰雹。20 日08 时地面和探空资料显示,江淮地区地面为暖低压,925、850 hPa 有低涡发展,存在明显的西南低空急流,500 hPa 有低槽东移,南京 08 时探空 T850-500 达到 30℃,K 指数 38.7℃,0—6 km 风垂直切变约为32 m/s,较强的位势不稳定层结和深厚的风垂直切变有利于强对流天气的发生和维持。干球温度0℃层(DBZ)高度约为3.8 km,湿球温度0℃层(WBZ)高度约为3.5 km(根据俞小鼎(2014)计算得到),-20℃高度约为6.6 km,有利于冰雹的发生(周小刚等,2015)。

3.2 观测和统计分析
3 月20 日14 时08 分在南京溧水区观测到冰雹。根据该雹暴系统的发展过程,重点分析发展(图 2a—d)、成熟(图 2e—h)和降雹(图 2i—l)3 个阶段的特征。图 2a—d 为 S 波段双偏振雷达2019 年 3 月 20 日 11 时 36 分的观测结果,由于该时刻系统发展高度较低且距离雷达站较远,展示其0.5°仰角的特征;图 2e—h 和图 2i—l 分别为 13 时33 分和14 时07 分观测结果,为了展示冰雹区的观测特征和降雹时的变化,选择3.3°仰角的观测资料。发展阶段对流逐渐加强,反射率因子达到约55 dBz,对流区域整体ZDR 偏小但边缘ZDR 较大,最小ρhv<0.9,表明该区域为下落的冰相粒子与雨滴的混合物。13 时33 分为冰雹出现前30 分钟,S 波段双偏振雷达观测到明显冰雹特征和三体散射“长钉”(图2e—h)。S 波段双偏振雷达在3.3°仰角上坐标(-5,-70)km,ZH>60 dBz,对应位置处ZDR 约为0 dB,最强回波处 ZH>65 dBz,ZDR<-0.5 dB,对应 ρhv 下降到0.9 附近,这些特征与过去关于冰雹回波特征的理论研究(刘黎平等,1992)以及北美的观测比较接近(Hubbert,et al,1998)。S 波段双偏振雷达在低层的观测(图略)表明ZH>55 dBz,最强回波处ZH>60 dBz。由于高层冰相粒子掉落融化形成大雨滴或者外包水膜的大粒子,ZDR 整体增大,但强回波处ZDR 仍然表现为小值区,最小低于-1 dB,ρhv 约为0.9,指示该区域有冰雹存在。图2f 中ZDR 和图2g中KDP 为明显的大值区域,对应该区域ρhv<0.7,部分区域ρhv<0.3,指示该区域为非气象回波。ZDR 高值区南侧为ZDR 负值区(图2f),表明该区域ZDR 波动较大;KDP 也表现出类似的特征,指示了波动幅度较大的φDP,这是典型的地物回波特征之一。结合反射率因子分析表明该区域受到三体散射影响。由于大粒子(冰雹)将电磁波散射到地面(Zrnić,1987;Wilson,et al,1988),而地面物体不规则的属性,造成了以上双线偏振雷达观测特征。14 时07 分为最接近观测到地面降雹时刻(图2i—l)的雷达体扫资料。与13 时33 分雹暴反射率因子垂直结构差异明显,3.3°仰角上反射率因子(图3i)明显降低,ZH 下降到约50 dBz,25 dBz 回波顶高约为8 km(图 3i),低于 13 时 33 分的 10 km。这与已有的研究结果基本一致,通常在雹暴的生命史过程中,最强反射率和最高顶高一般在冰雹发生前30—40 分钟(王莎等,2019)。这主要是因为在雹暴发展期,强上升气流将大量过冷水带到高层,导致冻结和凇附过程,形成大量冰相粒子,造成高悬的强回波中心。此外,强上升气流也将粒子带到更高层,形成更高的回波顶高。这些过程在偏振变量上也有所反映,距离70 km附近,ZDR(图3f)随高度迅速减小,这是由于液相转换为冰相,介电常数减小以及冰相粒子更接近球形所致(Carey,et al,2000)。

pagenumber_ebook=24,pagenumber_book=571
图 2 2019 年 3 月 20 日 11 时 36 分(a—d)0.5°、13 时 33 分(e—h)3.3°和 14 时 07 分(i—l)3.3°仰角双偏振雷达观测(a、e、i. ZH,b、f、j. ZDR,c、g、k. KDP,d、h、l. ρhv)
Fig. 2 Observations at 11:36 BT (a—d) at 0.5° elevation angle,13:33 BT (e—h) at 3.3° elevation angle and 14:07 BT (i—l)at 3.3° elevation angle on 20 May 2019 by dual-polarimetric radar (a,e,i. ZH;b,f,j. ZDR;c,g,k. KDP;d,h,l. ρhv)

pagenumber_ebook=25,pagenumber_book=572
图 3 2019 年 3 月 20 日 11 时 36 分(a—d)、13 时 33 分(e—h)和 14 时 07 分(i—l)双偏振雷达探测的垂直剖面(a、e、i. ZH,b、f、j. ZDR,c、g、k. KDP,d、h、l. ρhv)
Fig. 3 Observations at 11:36 BT (a—d),13:33 BT (e—h)and 14:07 BT (i—l) 20 May 2019 by dual-polarimetric radar(a,e,i. ZH;b,f,j. ZDR;c,g,k. KDP;d,h,l. ρhv)

图3a—d 为11 时36 分沿最强回波中心的剖面,45 dBz 回波中心从地面延伸到6 km 高度,0℃层以上ZDR 迅速减小到0 dB 甚至-0.5 dB,表明有冻结和凇附过程,200 km 附近低层ρhv 减小、ZDR 和KDP 增大,表明冰相粒子在这里下落融化,形成大雨滴或者外包水膜的大粒子和强降雨。13 时33 分沿三体散射方向的剖面,反射率因子(图3e)表现出明显倾斜结构和强回波悬垂,最大回波中心位于70 km 距离和5.8 km 高度附近,对应的负ZDR 和负KDP 指示该区域存在冰雹。强回波处负KDP 区域主要是冰雹的后向散射相位影响造成。距离55—70 km 的低层部分区域已经出现较大ZH(>40 dBz)、ZDR(>2 dB)和 KDP(>2°/km),表明该区域有强降水出现。接近冰雹下落时期,上升气流减弱,高层冰雹和霰粒子下落,高层反射率因子迅速下降,强回波中心(图 3i)下降到 2 km 高度,低层 ZDR(图 3j)相对于 13 时 33 分增大,KDP>1°/km 区域都位于0℃层高度以下,这些特征表明上升气流减弱,更多冰相粒子融化形成大雨滴或者外包水膜的大粒子和强降雨区。

为了进一步揭示雹暴在发展过程中的变化特征,利用3 个阶段的归一化频率分布图(CFAD)展示双偏振雷达观测变量的三维分布统计特征(图4)。发展阶段50%等值线(图4a)小于40 dBz,ZDR 10%等值线随高度下降最大增加至1.8 dB,ρhv 10%等值线在2.5 km 高度下降到0.88,指示少量冰相态粒子与降水混合物。成熟阶段反射率因子分布整体增大,反射率因子频率中心约为38—45 dBz,10%等值线在3.5 km 高度附近超过60 dBz。0℃层以上ZDR 相比发展期减小,而0℃层以下ZDR 增大,10%等值线增大到约2.7 dB。这可能与高层开始形成冰雹有关,而从高层掉落到低层的冰相粒子也更大,形成融化或者半融化的椭球粒子,这也造成了最低层ρhv 分布在0.9—1。降雹阶段的回波结构不同于发展阶段和成熟阶段,反射率频率中心位于3 km 以下,频率中心回落到40 dBz 以下。ZDR 分布范围大于发展阶段而小于成熟阶段。

pagenumber_ebook=27,pagenumber_book=574
图 4 2019 年 3 月 20 日 11 时 36 分—12 时 04 分 (a—d),13 时 11 分—50 分 (e—h)和 14 时 01—12 分 (i—l)的 ZH(a、b、c)、ZDR(d、e、f)、KDP(g、h、i)和 ρhv(j、k、l)的归一化频率分布
Fig. 4 CFAD of ZH (a,b,c),ZDR (d,e,f),KDP (g,h,i) and ρhv (j,k,l) at 11:36-12:04 BT (a—d),13:11-13:50 BT(e—h) and 14:01-14:12 BT (i—l) 20 May 2019

pagenumber_ebook=27,pagenumber_book=574
图 5 2019 年 3 月 20 日 ZH(a)、ZDR(b)、KDP(c)和 ρhv(d)平均垂直廓线(DBZ 和WBZ 分别指干球和湿球0℃高度)
Fig. 5 Mean vertical profiles of ZH(a),ZDR(b),KDP(c) and ρhv(d) 20 May 2019(WBZ and DBZ indicate the levels of wet ball zero and dry ball zero degree,respectively)

为了进一步展示雹暴的演变过程,给出雹暴从发展到成熟再到降雹的平均垂直廓线(图5)。从发展到成熟的过程,整层反射率因子廓线增大,到降雹阶段3 km 高度以上反射率因子明显减小(图5a)。这可能是由于成熟阶段上升气流较强,将过冷水抬升到较高的高度,通过冻结和凇附过程在高空形成冰雹区,造成高空强反射率因子。降雹阶段上升气流减弱,冰雹下落导致高空反射率因子明显降低而低层则仍然较强。ZDR 廓线随高度降低缓慢增大(图5b),反射率因子廓线在成熟阶段3 km 以下高度减小明显大于降雹阶段,这可能是由于成熟阶段有较强的蒸发过程,而随着空气逐渐接近饱和,降雹阶段蒸发减弱。12 时 43 分—13 时05 分,低层KDP 较大,表明该阶段降水较强,而在该时段之前和之后的降雹阶段KDP 都较小(图5c)。湿球0℃层以下,由于冰相粒子融化,以及冰水混合物的贡献,ρhv 在 2.5—3.5 km 高度附近达到最小值(图 5d)。成熟到降雹阶段ρhv 在融化层以下的最小值逐渐增大,且所在高度逐渐增高,结合反射率因子廓线指示高空下落融化的冰相粒子整体尺寸减小。

3.3 相态分类
相态分类对冰雹预警和认识相关微物理过程具有重要的意义。利用Park 等(2009)提出的HCA方法对偏振雷达探测资料进行处理,获得相态分类产品。图 6 为 11 时 36 分、13 时 33 分和 14 时 07 分0.5°仰角的PPI 相态分类产品。HCA 对每一个格点的10 种相态类别均计算出相应的概率,最大概率的类别通常被分配为这个格点的分类结果。但是需要注意的是,通常一个扫描体积内并不止包含一个相态类别,HCA 或是其他相态分类方法只是给出主导雷达信号的相态类别,为了更好地分析HCA分类结果,HCA 分类的最大概率类别结果(简称第一分类产品)和第二大概率类别结果(简称第二分类产品)展示在图6 中。

分类结果显示,HCA 方法在11 时36 分识别结果主要为降雨,也包含一些霰粒子。HCA 在13 时33 分和 14 时 07 分都识别到冰雹,且 13 时 33 分识别到冰雹区域面积更大。由于以下几点原因,并不能判断13 时33 分的识别结果为错误分类。(1)缺乏完整的冰雹观测记录;(2)HCA 第一分类产品(图7a)为冰雹的区域,第二分类产品(图7b)为强降水,表明HCA 方法认为低层主要是雨和冰雹混合物,与偏振变量的特征较为符合;(3)HCA 识别到的冰雹仅表示该扫描体积内的雷达信号特征表现为冰雹,而不是地面观测到降雹。14 时07 分识别到第一分类产品的冰雹正好位于南京溧水区,且与地面观测冰雹时间非常接近,分类结果较为理想。此外,14 时07 分HCA 产品强降水的部分区域第二分类产品也被识别为冰雹区域,由于强降水与融化的冰雹特征比较接近,这些区域也有可能产生冰雹。

为了对比分析相态分类产品在时、空上的分布特征,将双偏振观测变量插值到笛卡尔坐标,在此基础上通过HCA 方法计算得到相态分类产品。然后根据Steiner 等(1995)方法获得的对流分类,统计出发生对流区域冰雹体积(通过插值后三维格点的体积计算得到)随高度的变化(图7)。12 时04 分开始出现少量冰雹,到13 时11 分冰雹体积开始迅速增大。13 时33—50 分,冰雹体积达到最大,且达到高度最高。同时冰雹最大体积高度从4—5 km下降到2 km 附近,这对应着前文提到的高反射率因子频率中心下降。14 时后,冰雹体积在整个高度开始减小,但低层减少慢于高层,14 时07 分地面观测到降雹。14 时23 分冰雹特征接近消失,系统逐渐消亡。

4 三体散射特征分析
为了更好地认识三体散射特征以及为三体散射自动识别奠定基础,文中对该次过程中出现的三体散射特征进行了相关特征分析和统计。根据以往的研究,三体散射在回波结构上表现为具有强回波特征的冰雹区后的“长钉”形状弱回波。主要是由于大粒子(冰雹)将电磁波散射到地面,再由地面散射到空中的粒子,最后回到雷达造成(Zrnić,1987;Wilson,et al,1988)。由于电磁波被散射到地面,三体散射一般具有部分地物的特征(Mahale,et al,2014)。图 2e 中 3.3°仰角上,三体散射回波表现ZH<25 dBz 的“长钉”形状回波,对应ZDR 主要为负值,最小低于-0.5 dB,KDP 表现出较大幅度波动的特征,对应主要区域ρhv 低至0.7 以下,而通常的气象回波ρhv 高于0.8。除了反射率因子,其他变量都表现出地物的特征。这与Mahale 等(2014)的研究结果总体比较一致。

pagenumber_ebook=29,pagenumber_book=576
图 6 2019 年 3 月 20 日 11 时 36 分 (a、b),13 时 33 分 (c、d) 和 14 时 07 分 (e、f) 双偏振雷达 0.5°仰角观测的相态分类结果 (a、c、e. 第一分类产品;b、d、f. 第二分类产品)
Fig. 6 Observations at 0.5° elevation angle at 11:36 BT (a,b),13:33 BT (c,d) and 14:07 BT (e,f) 20 May 2019 by dualpolarimetric radar (a,c,e. the first classification results;b,d,f. the second classification results)

pagenumber_ebook=30,pagenumber_book=577
图 7 2019 年3 月20 日冰雹体积随时间演变(红色三角形代表降雹时刻)
Fig. 7 Temporal change of hail volume 20 May 2019(The red triangle represents the time of hail falling to the ground)

文中选取三体散射回波样本点共计3758 个。图8 为其概率密度分布及累计概率密度分布,并对比分析了Mahale 等(2014)中自动识别三体散射的成员函数。图8a 中80%的ZH 都分布在0—10 dBz,这主要是因为电磁波经过多次散射,导致信号较弱的原因,而Mahale 等(2014)中甚至有较大部分ZH 分布在-5—0 dBz。ZDR 的差异比较明显,Mahale等(2014)中主要分布在-4—7 dB,且大部分大于0 dB,而图8b 中主要分布在-4—2 dB,超过80%位于-4—0 dB,这可能与电磁波照射的地面特征有密切关系,但变化范围仍然在成员函数以内。ρhv 的分布比较接近于成员函数和Mahale 等(2014)的概率分布,但 Mahale 等(2014)中的雷达探测资料 ρhv 被限制为最低0.2083,导致了0.2 附近的高概率分布。另外有14%的ρhv 接近于1,可能是特定地物造成的高值。此外,虽然采样过程尽力避免混入气象回波,但是并不能保证完全排除气象回波。气象回波通常具有较低(<15)的 SD(φDP)和较高的 ρhv,从图 8e 中可见,小于 SD(φDP)<15 的样本占比约为12.5%,可以认为对数据影响比较有限。SD(ZH)分布与 Mahale 等(2014)非常接近。SD(φDP)分布则差异较大,Mahale 等(2014)中成员函数最大SD(φDP)为90,而图8e 中大量样本分布在100—200,分布范围大约是Mahale 等(2014)中结果的2 倍。需要特别说明的是,Mahale 等(2014)中成员函数的转折点是由人为确定,成员函数与Mahale 等(2014)统计的概率密度分布并不完全一致。

5 总结和讨论
利用南京2019 年3 月20 日双线偏振雷达一次降雹过程探测资料,分析了雹暴发展、成熟和降雹阶段的观测特征及相关微物理过程,分析了HCA方法相态分类结果,统计分析了三体散射概率密度分布特征,并与Mahale 等(2014)的分布进行了对比。主要研究结论如下:

pagenumber_ebook=31,pagenumber_book=578
(1)雹暴在成熟阶段具有高悬的强回波中心和较高的顶高,这通常是由强上升气流抬升过冷水到0℃层高度以上,通过冻结和凇附过程,形成大量冰相粒子造成。强回波中心ZDR<-0.5 dB,ρhv 约为0.9,指示了该区域有冰雹存在。HCA 方法在空中识别到大量冰雹。低层蒸发过程明显。

(2)降雹阶段融化层以上的反射率因子明显降低,强回波中心下降到地面附近,低层ρhv 廓线增加指示高空下落的冰相粒子整体尺寸减小。HCA 方法在空中识别冰雹开始减少的时刻,地面观测到降雹。

(3)三体散射的 ZH、ρhv 和 SD(ZH)概率密度分布与 Mahale 等(2014)比较接近;ZDR 概率分布存在一定差异,文中ZDR 分布<0 dB 超过80%,而Mahale等(2014)中 ZDR 分布更多在>0 dB;SD(φDP)分布差异较大,文中的分布范围大约是Mahale 等(2014)的2 倍。

由于南京S 波段双偏振雷达于2019 年初才完成升级,冰雹观测资料比较有限,文中仅以一次个例过程进行了分析,结果是否具有普适性还需要更多的观测资料积累和进一步研究。将来期望可以利用更多的观测资料分析冰雹和三体散射特征,建立适用于江淮地区的冰雹和三体散射自动识别方法。

参考文献

曹俊武,刘黎平. 2006. 双线偏振多普勒天气雷达识别冰雹区方法研究. 气象,32(6):13-19. Cao J W,Liu L P. 2006. Hail identification with duallinear polarimetric radar observations. Meteor Mon, 32(6): 13-19 (in Chinese)

范皓,杨永胜,段英等. 2019. 太行山东麓一次强对流冰雹云结构的观测分析. 气象学报,77(5):823-834. Fan H,Yang Y S,Duan Y,et al. 2019.An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain. Acta Meteor Sinica,77(5):823-834 (in Chinese)

何文英,陈洪滨. 2006. TRMM 卫星对一次冰雹降水过程的观测分析研究.气象学报,64(3):364-376. He W Y,Chen H B. 2006. Analyses of evolutional characteristics of a hailstorm Precipitation from TRMM observations. Acta Meteor Sinica,64(3):364-376 (in Chinese)

胡志群,刘黎平,吴林林. 2014. C 波段偏振雷达几种系统误差标定方法对比分析. 高原气象,33(1):221-231. Hu Z Q,Liu L P,Wu L L. 2014.Comparison among several system biases calibration methods on C-band polarimetric radar. Plateau Meteor,33(1):221-231 (in Chinese)

李聪,姜有山,姜迪等. 2017. 一次冰雹天气过程的多源资料观测分析. 气象,43(9):1084-1094. Li C,Jiang Y S,Jiang D,et al. 2017. Observation and analysis of a hailstorm event based on multi-source data. Meteor Mon,43(9):1084-1094 (in Chinese)

刘黎平,徐宝祥,王致君等. 1992. 用C 波段双线偏振雷达研究冰雹云. 大气科学,16(3):370-376. Liu L P,Xu B X,Wang Z J,et al. 1992. Study of hail with C-B and dual linear polarization radar. Sci Atmos Sinica,16(3):370-376 (in Chinese)

马建立,苏德斌,金永利等. 2012. X 波段双线性偏振雷达电磁波衰减对冰雹识别的影响. 高原气象,31(3):825-835. Ma J L,Su D B,Jin Y L,et al. 2012. The impact of attenuation of X-band dual linear polarimetric radar on hail recognition. Plateau Meteor,31(3):825-835 (in Chinese)

苏德斌,马建立,张蔷等. 2011. X 波段双线偏振雷达冰雹识别初步研究. 气象 , 37(10): 1228-1232. Su D B, Ma J L, Zhang Q, et al. 2011.Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon,37(10):1228-1232 (in Chinese)

王莎,沙勇,宋金妹等. 2019. 冀东地区冰雹云多普勒雷达参数特征分析. 气象 , 45(5): 713-722. Wang S, Sha Y, Song J M, et al. 2019.Characteristic analysis of hail cloud doppler radar parameters in the Eastern Hebei Province. Meteor Mon,45(5):713-722 (in Chinese)

王研峰,黄武斌,王聚杰等. 2019. 一次甘肃天水强冰雹的雷达回波特征及成因分析. 高原气象,38(2):368-376. Wang Y F,Huang W B,Wang J J,et al. 2019. Analysis on the characteristic of radar echo and the causes of a strong hail in Tianshui City of Gansu Province. Plateau Meteor,38(2):368-376 (in Chinese)

吴林林,刘黎平,郑媛媛等. 2014. 基于SWAN 的冰雹探测算法研究. 高原气象,33(3):823-831. Wu L L,Liu L P,Zheng Y Y,et al. 2014. Study of hail detection algorithm based on SWAN system. Plateau Meteor,33(3):823-831 (in Chinese)

徐芬,郑媛媛,肖卉等. 2016. 江苏沿江地区一次强冰雹天气的中尺度特征分析. 气象,42(5):567-577. Xu F,Zheng Y Y,Xiao H,et al. 2016.Mesoscale characteristics of a severe hail event over the area along Yangtze River in Jiangsu. Meteor Mon,42(5):567-577 (in Chinese)

许焕斌,王思微. 1988. 二维冰雹云数值模式. 气象学报,46(2):227-236.Xu H B,Wang S W. 1988. Two-dimension hailcloud model. Acta Meteor Sinica,46(2):227-236 (in Chinese)

许焕斌,段英. 2001. 冰雹形成机制的研究并论人工雹胚与自然雹胚的“利益竞争”防雹假说. 大气科学,25(2):277-288. Xu H B,Duan Y. 2001.The mechanism of hailstone's formation and the hail-suppression hypothesis:"Beneficial Competition". Chinese J Atmos Sci,25(2):277-288 (in Chinese)

俞小鼎. 2014. 关于冰雹的融化层高度. 气象,40(6):649-654. Yu X D.2014. A note on the melting level of hail. Meteor Mon,40(6):649-654(in Chinese)

曾智琳,谌芸,朱克云等. 2019. 广东省大冰雹事件的层结特征与融化效应.大气科学,43(3):598-617. Zeng Z L,Chen Y,Zhu K Y,et al. 2019.Characteristics of atmospheric stratification and melting effect of heavy hail events in Guangdong Province. Chinese J Atmos Sci,43(3):598-617(in Chinese)

张秉祥,李国翠,刘黎平等. 2014. 基于模糊逻辑的冰雹天气雷达识别算法.应用气象学报,25(4):415-426. Zhang B X,Li G C,Liu L P,et al.2014. Identification method of hail weather based on fuzzy-logical principle. J Appl Meteor Sci,25(4):415-426 (in Chinese)

张文海,李磊. 2019. 人工智能在冰雹识别及临近预报中的初步应用. 气象学 报 , 77(2): 282-291. Zhang W H, Li L. 2019. A preliminary application of artificial intelligence on the detection and nowcasting of hail weather. Acta Meteor Sinica,77(2):282-291 (in Chinese)

赵文慧,姚展予,贾烁等. 2019. 1961~2015 年中国地区冰雹持续时间的时空分布特征及影响因子研究. 大气科学,43(3):539-551. Zhao W H,Yao Z Y,Jia S,et al. 2019. Characteristics of spatial and temporal distribution of hail duration in China during 1961-2015 and its possible influence factors. Chinese J Atmos Sci,43(3):539-551 (in Chinese)

周小刚,费海燕,王秀明等. 2015. 多普勒雷达探测冰雹的算法发展与业务应用讨论. 气象,41(11):1390-1397. Zhou X G,Fei H Y,Wang X M,et al. 2015. Doppler radar hail detection algorithm development and its operational application discussion. Meteor Mon,41(11):1390-1397 (in Chinese)

Carey L D,Rutledge S A. 2000. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon Wea Rev,128(8):2687-2710

Depue T K,Kennedy P C,Rutledge S A. 2007. Performance of the Hail Differential Reflectivity (HDR) polarimetric radar hail indicator. J Appl Meteor Climatol,46(8):1290-1301

Hubbert J,Bringi V N,Carey L D,et al. 1998. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J Appl Meteor,37(8):749-775

Mahale V N,Zhang G F,Xue M. 2014. Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J Appl Meteor Climatol,53(8):2017-2033

Park H S, Ryzhkov A V, Zrnić D S, et al. 2009. The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS. Wea Forecasting,24(3):730-748

Steiner M,Houze R A Jr,Yuter S E. 1995. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteor,34(9):1978-2007

Wang Y T,Chandrasekar V. 2009. Algorithm for estimation of the specific differential phase. J Atmos Ocean Technol,26(12):2565-2578

Wilson J W, Reum D. 1988. The flare echo: Reflectivity and velocity signature. J Atmos Ocean Technol,5(2):197-205

Wu C,Liu L P,Wei M,et al. 2018. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci,35(3):296-316

Zrnić D S. 1987. Three-body scattering produces precipitation signature of special diagnostic value. Radio Sci,22(1):76-86

YANG Ji ZHENG Yuanyuan XU Fen

Key Laboratory of Transportation Meteorology,China Meteorological Administration / Jiangsu Institute of Meteorological Sciences/Nanjing Joint Institute for Atmospheric Sciences,Nanjing 210009,China

Abstract In order to better understand the hail and three-body scattering signature, improve the ability of operational warning and lay the foundation of automatic hail identification on the ground based on dual-polarization radar, a hail case observed by the S-band polarimetric radar on 20 March 2019 is used to examine the observational signature and microphysical process. The result shows that:(1) During the mature stage, the hailstorm has high echo top and strong echo area aloft that are characterized by negative ZDR(<-0.5 dB), low ρhv (~0.9) and negative KDP caused by backscattering phase, indicating that hails existing within this area are reasonably identified by HCA; (2) during the period of hail falling on the ground, the reflectivity in high levels decreases, the strong echo area descends close to the ground, and ρhv below the melting level increases, indicating that the size of ice particles falling from high levels decreases; hails fall to the ground at the time when the hails identified by HCA is decreasing; (3) the probability density distributions (PDD) of ZH, ρhv and (SD (ZH)) within three-body scattering signature are similar to that in North American, and the PDD of ZDR tends to be more negative, while the range of distribution for SD (φDP) is about twice that in North America.

Key words Hail,Dual-polarization radar,Three-body scatter signature

2019-08-29 收稿,2020-01-27 改回.

杨吉,郑媛媛,徐芬. 2020. 江淮地区一次冰雹过程的双线偏振雷达观测分析. 气象学报,78(4):568-579

Yang Ji, Zheng Yuanyuan, Xu Fen. 2020. An analysis of a hail case over the Yangtze and Huai River Basin based on dual-polarization radar observations. Acta Meteorologica Sinica, 78(4):568-579

中图法分类号 P407.2

* 资助课题:国家重点研发计划“重大自然灾害”专项(2018YFC1507503)、国家自然科学基金项目(41805025 和41575036)、江苏省气象局重点研发项目(KZ201905 和 KZ201908)。

作者简介:杨吉,主要从事雷达气象研究。E-mail:yangji1986@163.com

通信作者:郑媛媛,主要从事雷达气象研究。E-mail:zhengyy63@sina.com

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2025-1-10 15:55

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表