奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

帮助中心知识拓展客服QQ 515224986
查看: 939|回复: 0

西交《数据结构》拓展资源(三)

[复制链接]

1万

主题

1

回帖

2万

积分

论坛元老

积分
29028
发表于 2021-3-19 11:33:59 | 显示全部楼层 |阅读模式
扫码加微信
西交《数据结构》拓展资源(三)
第三章 栈和队列
经典问题之——汉诺塔
汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。汉诺塔的大概起源就是这样,众僧们耗尽毕生精力也不可能完成金片的移动,因为通过计算,发现移动圆片的次数为18446744073709551615,这基本上是一个不可能完成的任务。
汉诺塔规则:后来,这个传说就演变为下面的规则:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片。
比如,3阶汉诺塔可以这样移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。
此外,汉诺塔问题也是程序设计中的经典递归问题。算法思路:通过程序,可以借助计算机的快速处理速度来解决这个问题,方法如下:
1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒.
3.单纯对于有N个金片要挪动的步数求出, 可以使用递推方法,满足递推方程f(i) = f(i - 1) * 2 + 1.C语言版本的Hanoi塔问题:
一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。本题算法分析如下:
设A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B. 将A上的一个圆盘移到C。
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。
到此,完成了三个圆盘的移动过程。从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。显然这是一个递归过程,据此算法可编程如下:
move(int n,int x,int y,int z)
{
if(n==1)
printf("%c-->%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c-->%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{        int h;
printf("\ninput number:\n");
scanf("%d",&h);
printf("the step to moving %2d diskes:\n",h);
move(h,'a','b','c');
}
本内容由易百网整理发布
网址 www.openhelp100.com
QQ 515224986
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-11-24 01:36

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表