乳酸杆菌对肉鸡生长性能影响的Meta分析乳酸杆菌对肉鸡生长性能影响的Meta分析 邢爽,冯京海 (中国农业科学院北京畜牧兽医研究所/动物营养学国家重点实验室,北京 100193) 摘要:【目的】利用荟萃分析(Meta分析)研究日粮中添加乳酸杆菌对肉鸡生长性能的影响,以期为肉鸡生产提供一定的理论和数据参考。【方法】从国内外数据库中共检索出符合分析要求的24篇文献,包括25项试验,8 702个研究对象。采用Review Manager(version 5.3),计算各生长性能指标的标准化均数差SMD(乳酸杆菌组和对照组均数的差值除以两组标准差平均值的商),根据不同研究使用的样本数量、指标测定的标准差,确定不同研究结果的权重值,汇总多个相互独立的研究结果。根据I2统计量对纳入文献的生长性能数据进行异质性检验,通过漏斗图及egger检验分析纳入文章的发表偏倚并进行敏感性分析。由于本次分析各项指标均存在显著异质性,故采用随机效应模型对连续型数据进行分析,并根据乳酸杆菌菌种进行亚组分析,探讨不同乳酸杆菌对肉鸡生长性能的影响效果。【结果】从试验全期来看,饲粮中添加乳酸杆菌显著提高肉鸡的平均日增重(SMD=1.53,P<0.001),显著降低料重比(SMD=-1.50,P<0.001),对采食量无显著影响(P=0.470)。分别分析肉鸡前期(1—21日龄)和后期(22—42日龄)的生长数据发现,乳酸杆菌显著提高肉鸡前期平均日增重(SMD=1.05,P<0.001),有提高后期日增重的趋势(SMD=0.52,P=0.090),显著降低前期料重比(SMD=-1.31,P<0.001)和后期料重比(SMD=-0.94,P<0.001)。从SMD的数值上可以看出,乳酸杆菌对肉鸡前期的促生长效果优于后期。漏斗图及egger分析表明,前期F/G(P=0.012)和后期ADFI(P=0.006)偏倚性达到显著水平,其他指标的偏倚性不显著(P>0.05);敏感性分析发现,日增重和料重比的分析结果稳定。异质性检验发现,各生长指标存在显著异质性(P<0.001),根据乳酸杆菌菌种进行亚组分析,可降低Meta分析结果的异质性。亚组分析显示,植物乳酸杆菌对肉鸡全期日增重(1.98,P<0.001)和饲料转化效率(-1.66,P<0.001)的促进作用优于干酪乳杆菌(0.51,-0.68,P≤0.02)和约氏乳杆菌(1.15,-0.16,P ≤ 0.02)。【结论】Meta分析表明,乳酸杆菌可改善不同阶段肉鸡的日增重和饲料转化效率,对采食量无显著影响。不同乳酸杆菌的促进作用存在差异,其中植物乳杆菌的促进作用最优。 关键词:乳酸杆菌;肉鸡;生长性能;Meta分析 0 引言【研究意义】抗生素作为生长促进剂曾在肉鸡饲料中广泛使用[1-3],长期使用抗生素可导致耐药菌[4]、药物残留[5-6]以及肠道菌群失衡[7-8]等问题,严重威胁家禽以及人类的健康,各国纷纷制定法规限用或禁用抗生素。【前人研究进展】益生菌作为抗生素的替代品受到研究人员的关注,其中乳酸杆菌的研究最为广泛,然而大量研究的结果并不一致。部分研究发现乳酸杆菌可以改善肉鸡的日增重,降低日采食量和料重比[9-12];部分研究证实乳酸杆菌对肉鸡生长性能无显著影响[13-16];还有部分研究表明日粮中添加乳酸杆菌抑制肉鸡的生长[17-19]。研究结果的不一致一方面可能由于部分试验的样本量过小,随机误差过大,掩盖了处理效应。另一方面可能是由于不同试验选用的乳酸杆菌菌种、饲喂剂量、饲喂方式、作用时间和环境条件不同造成的。【本研究切入点】采用传统的基于定性的文献综述很难总结出乳酸杆菌对肉鸡生长性能的影响规律。Meta分析可以通过定量的方法,根据不同研究使用的样本数量、指标测定的标准差,确定不同研究结果的权重值,汇总多个相互独立的研究结果。同时考虑研究对象的异质性来剖析结果差异,从而获得更准确的分析结果[20]。【拟解决的关键问题】利用Meta分析系统评价乳酸杆菌对肉鸡不同生长阶段生产性能指标的影响,同时采用亚组分析,比较不同乳酸杆菌菌种的作用效果,以期为肉鸡生产提供一定的理论和数据参考。 西藏地区本身地理位置就较为偏僻,各方面发展也尚未成熟,虽然现如今相关院校也已经实施了20多年的英语教育,但是因为环境以及思想的落后,促使人们对于英语这一门课程并没有较高的重视程度;很多人甚至会觉得英语学习就是为了应付升学考试,并不存在任何实际作用的想法。另外,西藏地区本就具有本民族的语言,所以在他们的浅意识之中,学好汉语的价值明显要高于英语,在这种思想意识之下,西藏地区学生英语基础水平也就较为低下,更别提学生英语自主学习能力。 汉晋之际是中国艺术史上的关键阶段,艺术在这一时期摆脱了“名教”和经学的束缚,文人士大夫的热衷参与促进了艺术的高度繁荣。特别值得一提的是,汉晋之际以琅邪王氏和陈郡谢氏为代表的江南艺术世家对艺术发展和传承的作用和影响尤为突出。由于江南艺术世家的贡献,这一时期,音乐、书法、园林、诗歌等艺术领域获得了全面的繁荣,不仅极大地提高了当时艺术创作与品评的水准,而且为后世艺术的传承与革新提供了重要的借鉴和指导。 1 材料与方法1.1 文献检索通过Web of Science、Science Direct、SpringerLink、Google学术、中国知网、维普和万方数据库筛选相关文献。检索方式为文章标题和关键词,英文检索词为:(lactobacillus or probiotics)and(broilers or poultry);中文检索词为:(乳酸杆菌或益生菌)和(肉鸡或家禽)。文献检索时间截止到2018年4月。 1.2 纳入标准(1)研究设计为随机对照试验;(2)研究对象为肉仔鸡;(3)基础日粮为玉米豆粕型日粮;(4)干预措施是在日粮中补充乳酸杆菌,并以基础日粮作为对照,乳酸杆菌的添加剂量不在筛选范围;(5)试验以肉鸡1日龄为开始时间,试验持续时间为42 d;(6)肉鸡生长性能的指标包括平均日增重、平均日采食量或料重比,并且研究中给出了指标的数值或平均值、标准差(SD)或标准误(SE)。 状态监测系统提供丰富直观的、可组态的多个监测画面,从不同的角度、分层次展现机组的状态信息。监测画面中将各种监测状态以图表、图形、数据等形式展示出来。 1.3 排除标准(1)重复报告、会议论文、综述、文献摘要和未发表的文献;(2)试验周期不符或者未在21或42日龄测定指标的文献;(3)多种乳酸杆菌混合物或者乳酸杆菌与其他益生菌联合作用的文献;(4)乳酸杆菌发酵饲料等加工处理后用于肉鸡上的文献;(5)数据不全或者无法利用的文献。 1.4 数据分析本研究使用Review Manager(version 5.3)进行Meta数据分析。首先对纳入文献的生长性能数据进行异质性检验,以I2统计量为异质性大小,以P<0.05为异质性显著标准。由于本次分析发现各项指标均存在显著的异质性,故采用随机效应模型对连续型数据进行分析,计算效应量,使得结果更加接近无偏估计。效应量采用标准化均数差(standardized mean difference, SMD)表示,SMD为两组(乳酸杆菌组和对照组)均数的差值除以两组标准差平均值的商。SMD消除了不同试验直接结果差异过大的影响。然后根据不同试验所用样本量和标准差的大小,确定试验的权重,计算综合SMD。通过漏斗图查看纳入文章的发表偏倚,并通过STATA 12.0进行egger检验。如存在发表偏倚则进行敏感性分析。敏感性分析的方法为:随机删除一篇纳入文献,重新计算综合SMD,连续操作10次,观察综合SMD的变异系数。由于本次分析各项指标均存在显著异质性,因此根据乳酸杆菌菌种进行亚组分析,探讨不同乳酸杆菌对肉鸡生长性能的影响效果。 2 结果2.1 数据库描述通过在数据库中对标题和关键词检索,共获得300篇相关文献,按照上述纳入与排除标准逐步筛选后,最终有24篇文献[9-10,12,14-17,21-37]纳入本次Meta分析,包括25项试验,8 702个研究对象。平均每个试验348只肉鸡,每个处理103只肉鸡。其中在试验前期(1—21日龄)测定生产性能指标的有14篇,试验后期(22—42日龄)有14篇,试验全期(1—42日龄)有23篇。83%的文献说明了肉鸡品种(其中45%为Arbor Acres,20%为Ross,25%为Cobb,10%为其他品种)。试验中肉公鸡占46%,公母肉鸡混合占21%,未标明性别占33%。添加的乳酸杆菌菌种有植物乳杆菌、嗜酸乳杆菌、干酪乳杆菌、约氏乳杆菌、唾液乳杆菌、芽孢乳杆菌、发酵乳杆菌、罗伊氏乳杆菌和卷曲乳杆菌。乳酸杆菌的饲喂方式通过饮水或日粮,添加剂量为105—1010cfu/g(ml)。所有试验均为玉米豆粕型日粮。 2.2 Meta分析由表1可见,饲粮中添加乳酸杆菌显著提高1—42日龄肉鸡的平均日增重(P<0.001),SMD为1.53,95% 置信区间(CI)为1.22—1.84;显著降低料重比(P<0.001),SMD为-1.50,95% CI为-1.92—-1.08;对采食量无显著影响(P=0.470)。分别分析肉鸡前期(1—21日龄)和后期(22—42日龄)的生长数据发现,乳酸杆菌显著提高肉鸡前期日增重(SMD=1.05,P<0.001),有提高后期日增重的趋势(SMD=0.52,P=0.090);显著降低前期料重比(SMD=-1.31,P<0.001)和后期料重比(SMD=-0.94,P<0.001)。从SMD的数值上可以看出,乳酸杆菌对肉鸡前期的促生长效果优于后期。 由表1可知,插秧机插植部两侧浮板的最大高度差可以达到6.1cm,插植部工作中期望最大倾角达到5.71°。在静态试验中秧苗插深自适应调节系统的控制相对误差均在5%以内,其中当该系统工作在半量程区间时,有着较好的控制精度。而系统处于初始以及接近满量程工作区间时,控制精度较差,相对误差在4%以上。究其原因,这应是该系统横向仿形控制机构的机械结构设计引起的。 表1 乳酸杆菌对肉鸡生长性能影响的Meta分析 Table 1 Meta-analysis of the effect of Lactobacillus on growth performance in broiler chickens 指标Index效应量Effect size异质性检验Heterogeneity nSMD95%CI实际值变化范围Range of increaseP值P valueI2P值P value 前期(1-21日龄)Early stage (1-21 d) ADG36141.050.69,1.421.69-3.15P<0.00198P<0.001 ADFI3482-0.09-0.47,0.28-4.49-3.39P=0.63098P<0.001 F/G3614-1.31-1.86,-0.77-0.26-0.02P<0.00199P<0.001 后期(22-42日龄)Late stage (22-42 d) ADG36140.52-0.08,1.12-6.54-12.74P=0.09099P<0.001 ADFI3482-0.32-1.05,0.40-14.96-12.83P=0.38099P<0.001 F/G3614-0.94-1.28,-0.59-0.45-0.32P<0.00198P<0.001 全期(1-42日龄)Entire stage (1-42 d) ADG41181.531.22,1.84-0.74-8.58P<0.00197P<0.001 ADFI5706-0.16-0.16,0.28-8.21-6.88P=0.47099P<0.001 F/G5918-1.43-1.83,-1.03-0.38-1.03P<0.00199P<0.001
n:肉鸡试验样本比较数,SMD:标准化均差,CI:置信区间,效应量为随机效应模型 n: Number of comparisons, SMD: Standardized mean difference, CI: Confidence interval, Effect sizes were estimated from a random effects model 异质性检验表明,不同阶段生长性能指标均存在显著的异质性(P<0.001),I2值在97—99。因此本次分析采用了随机效应模型进行计算综合SMD,同时需要针对可能导致异质性的关键因素进行分组,进一步进行亚组分析。 2.3 敏感性分析运用Review Manager5.3,对纳入文献的效应指标进行偏倚性分析。从漏斗图(图1)可以看出,散点基本位于中线两侧,但不完全对称,个别散点明显偏离竖线,表明本次纳入文献存在部分发表偏倚;egger分析结果显示,前期F/G(P=0.012)和后期ADFI(P=0.006)偏倚性达到显著水平,其他指标并未达到显著水平(P>0.05),因此对这两个指标meta分析结果的解读需要谨慎。敏感性分析表明(表2),随机删除一篇文献后,不同阶段ADG和F/G的SMD与原结果差异不大,连续操作10次总变异系数在3.89%—7.13%,表明本次Meta分析的ADG和F/G结果具有很好的稳定性,排除个别文献后不会对Meta分析的结果造成明显影响。而随机删除一篇文献后,不同阶段ADFI的SMD结果变异很大,10次总变异系数在13.38%—18.94%,表明不同文献研究结果差异非常大,删除一篇将影响到最终结果,这也可能是Meta分析后无法得到显著结果的原因。 2.4 亚组分析根据乳酸杆菌菌种进行亚组分析后,结果的异质性有一定程度的降低(表3)。这表明菌种差异是引起异质性的重要来源,但亚组分析后异质性仍然显著,表明即使使用相同的菌种,乳酸杆菌的添加剂量、饲养方式以及肉鸡品种、环境条件等方面不同仍可能导致试验结果的差异。由表3可知,植物乳杆菌显著提高肉鸡全期日增重(SMD=1.98,P<0.001),显著降低料重比(SMD=-1.66,P<0.001);嗜酸乳杆菌显著提高肉鸡日增重(SMD=1.58,P<0.001),显著降低采食量(SMD=-0.41,P=0.010)和料重比(SMD=-0.67,P=0.020);干酪乳杆菌显著提高全期肉鸡日增重(SMD=0.51,P=0.002),降低料重比(SMD=-0.68,P<0.001);约氏乳杆菌显著提高肉鸡日增重(SMD=1.15,P=0.002),显著降低料重比(SMD=-0.16,P=0.020)。从SMD的数值上可以看出,植物乳杆菌和嗜酸乳杆菌的促生长效果优于干酪乳杆菌;植物乳杆菌改善饲料转化率的效果优于其他三种乳杆菌。综合而言,植物乳杆菌促进肉鸡生长性能的效果最优。 A—C:肉鸡前期;D—F:肉鸡后期 A-C: broilers in the early stage; D-F: broilers in the late stage 图1 纳入文献偏倚性分析漏斗图 Fig. 1 Inclusion of literature bias analysis Funnel plot 表2 Meta分析结果的敏感性分析 Table 2 Sensitivity analysis on the results of meta-analysis 指标Index前期(1-21日龄)Early stage (1-21 d)后期(22-42日龄)Late stage (22-42 d)全期(1-42日龄)Entire stage (1-42 d) ADGADFIF/GADGADFIF/GADGADFIF/G SMD范围The range of SMD1.02-1.11-0.16--0.09-1.44--1.150.47-0.60-0.41--0.27-1.1--0.911.42-1.64-0.19--0.11-1.55--1.26 变异系数Variation coefficient4.04%18.94%6.08%7.13%13.75%5.24%3.89%13.38%5.93%
表3 不同乳酸杆菌对肉鸡全期生长性能影响的亚组分析 Table 3 Subgroup analyses for the effects of different Lactobacillus species on the growth performance in broiler chickens 全期(1-42日龄)Entire stage (1-42 d)效应量Effect size亚组分析异质性Subgroup analysis for heterogeneity nSMD95%CIP值P valueI2P值P value总I2Total I2 ADG植物乳杆菌L. plantarum15501.981.46,2.50P<0.00197P<0.00187.4 嗜酸乳杆菌L. acidophilus11241.580.72,2.44P<0.00198P<0.001 干酪乳杆菌L. casei3640.510.19,0.83P=0.00279P<0.001 约氏乳杆菌L. johnsonii4401.150.42,1.87P=0.00296P<0.001 ADFI植物乳杆菌L.plantarum15500.29-0.30,0.89P=0.33098P<0.00193.7 嗜酸乳杆菌L. acidophilus992-0.41-0.74,-0.09P=0.01089P<0.001 干酪乳杆菌L. casei3640.02-0.13,0.17P=0.780 1P=0.400 约氏乳杆菌L.johnsonii4400.72-0.23,1.67P=0.14098P<0.001 F/G植物乳杆菌L. plantarum1550-1.66-2.14,-1.17P<0.00197P<0.00193.9 嗜酸乳杆菌L. acidophilus1124-0.67-1.23,-0.10P=0.02097P<0.001 干酪乳杆菌L. casei364-0.68-0.95,-0.42P<0.00168P=0.010 约氏乳杆菌L. johnsonii440-0.16-0.29,-0.02P=0.020 0P=0.650
n:肉鸡试验样本数,SMD:标准化均差,Cl:置信区间。效应量为随机效应模型 n: Number of comparisons, SMD: Standardized mean difference, CI: Confidence interval. Effect sizes were estimated from a random effects model 3 讨论近年来大量文献报道了乳酸杆菌对肉鸡生长性能的影响,但结果存在很大差异。采用传统的基于定性的文献综述很难总结出乳酸杆菌对肉鸡生长性能的影响。本文采用Meta分析,根据不同研究使用的样本数量、指标测定的标准差,确定不同研究结果的权重值,汇总多个相互独立的研究结果。结果发现乳酸杆菌可以显著提高肉鸡不同阶段的日增重和饲料转化效率。敏感性分析表明,乳酸杆菌提高肉鸡不同阶段日增重和饲料转化效率的结果较为稳定,并非受少数研究结果的影响,但关于采食量的分析结果敏感性较差,主要由于不同文献关于肉鸡采食量的结果差异较大,删除任意一篇文献将影响到最终分析结果,这可能是Meta分析无法得出显著结果的原因。导致研究结果差异较大的主要原因可能有3个:所用菌种不同、添加剂量不同,肉鸡的阶段不同。但是亚组分析发现,即使是同一菌种,对于采食量的影响仍无法得出显著的一致结果,同样针对肉鸡前期和后期分别进行meta分析,也未得出显著的一致结果,我们又将所纳入文献中的添加剂量与采食量进行了相关分析,也未发现添加剂量和采食量存在显著的相关关系。推测乳酸杆菌对于肉鸡采食量的影响可能存在较强的特异性,特定的菌种、特定的剂量、特定的使用阶段将产生特定的效果。因而无法得出相对一致meta分析结果。虽然敏感性分析表明,乳酸杆菌提高肉鸡日增重和饲料转化效率的结果较为稳定,但同样存在显著的异质性,针对不同菌种进行亚组分析后,异质性明显降低,但仍然达到显著。这可能是由于不同试验即使选用同一菌种,但是使用的菌株不同,或者饲喂剂量、饲喂方式以及环境条件、肉鸡品种等存在差异造成的。 乳酸杆菌具有较强的产酸能力,通过降低肠道pH值,维持肠道菌群的稳态,同时可以分泌细菌素,以及通过占位竞争等方式减少肠道有害菌的数量,维持肠道健康,保证肠道正常的消化吸收功能,这是乳酸杆菌发挥益生效果的关键因素[38-41]。另外乳酸杆菌可以产生多种酶[42],促进碳水化合物和蛋白质的降解,其发酵产生的挥发性脂肪酸,也可被肠道直接利用,这也是乳酸杆菌促进肉鸡生产性能的因素之一。本文分析表明,乳酸杆菌对肉鸡前期的促生长效果优于后期。在肉鸡生长前期,肠道优势菌群处于逐步建立的过程,容易受到外界因素的干扰,导致肠道菌群失衡,影响肉鸡的生长和健康,此时添加乳酸杆菌有利于维持肉鸡肠道的菌群平衡,因此对于肉鸡生长前期作用效果更为显著。本文亚组分析表明,植物乳杆菌、嗜酸乳杆菌、干酪乳杆菌和约氏乳杆菌均能显著的促进肉鸡生长性能的效果,综合而言,植物乳杆菌的促进作用最优。植物乳杆菌具有较强的产酸和体外抑菌作用[43-44],同时是一种典型的兼性厌氧菌,且具有良好的耐酸、耐胆盐和粘附肠上皮细胞的特性[45],这可能是其改善肉鸡生长性能的关键原因。目前有关植物乳杆菌的应用研究最多,表明其受到广泛的关注。今后需要进一步研究植物乳杆菌菌种内不同亚种或不同菌株的促生长效果,以期筛选出更加有效的益生菌株。 4 结论Meta分析结果显示乳酸杆菌能显著提高肉鸡不同阶段日增重和饲料转化效率。从SMD的数值上可以看出,乳酸杆菌对肉鸡前期的促生长效果优于后期;亚组分析表明,植物乳杆菌、嗜酸乳杆菌、干酪乳杆菌和约氏乳杆菌均可显著的促进肉鸡生长性能的效果,综合而言,植物乳杆菌的促进作用最优。 References [1] Lee K W, Hong Y H., Lee S H, Jang S I, Park M S, Bautista D A, Ritter G D, Jeoung,H Y, An D J, Lillehoj E P, Lillehoj H S. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Research in Veterinary Science, 2012, 93(2): 721-728. [2] Chattopadhyay M K. Use of antibiotics as feed additives: a burning question. Frontiers in Microbiology, 2014, 5: 334. [3] Eckert N H, Lee J T, Hyatt D, Stevens S M, Anderson S, Anderson P N, Beltran R, Schatzmayr G, Mohnl M, Caldwell D J. Influence of probiotic administration by feed or water on growth parameters of broilers reared on medicated and nonmedicated diets. Journal of Applied Poultry Research, 2010, 19(1): 59-67. [4] Forgetta V, Rempel H, Malouin F, Vaillancourt J R, Topp E, Dewar K, Diarra M S. Pathogenic and multidrug- resistant Escherichia fergusonii from broiler chicken. Poultry Science, 2012, 91(2): 512-525. [5] Carvalho I T, Santos L. Antibiotics in the aquatic environments: A review of the European scenario. Environment International, 2016, 94: 736-757. [6] Ronquillo M G, Hernandez J C A. Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Food Control, 2017, 72: 255-267. [7] Zorriehzahra M J, Delshad S T, Adel M, Tiwari R, Karthik K, Dhama K, Lazado C C. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 2016, 36(4): 228-241. [8] GAO P, MA C, SUN Z, WANG L, HUANG S, SU X, XU J, ZHANG H. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 2017, 5(1): 91. [9] Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Frontiers in Microbiology, 2017, 8: 1073. [10] Forte C, Manuali E, Abbate Y, Papa P, Vieceli L, Tentellini M, Trabalza-Marinucci M, Moscati L. Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poultry Science, 2017, 97(3): 930-936. [11] Apata D F. Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal of the Science of Food and Agriculture, 2008, 88(7): 1253-1258. [12] Panda A K, Rao S V R, Raju M V L N, Sharma S R. Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico-lipid profile of broiler chickens. The Journal of Poultry Science, 2006, 43(3): 235-240. [13] Awad W A, Ghareeb K, Abdel-Raheem S, Böhm J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 2009, 88(1): 49-56. [14] Yu B, Liu J R, Chiou M Y, Hsu Y R, Chiou P W S. The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian Australasian Journal of Animal Sciences, 2007, 20(8): 1243-1251. [15] Han J, Wang Y, Song D, Lu Z, Dong Z, Miao H, Wang W, He J, Li A. Effects of Clostridium butyricum and Lactobacillusplantarumon growth performance, immune function and volatile fatty acid level of caecal digesta in broilers. Food and Agricultural Immunology, 2018, 29(1): 798-807. [16] Liu L, Ni X, Zeng D, Wang H, Jing B, Yin Z, Pan K. Effect of a dietary probiotic,Lactobacillus johnsonii BS15, on growth performance, quality traits, antioxidant ability, and nutritional and flavour substances of chicken meat. Animal Production Science, 2017, 57(5): 920-926. [17] 李阳, 常文环, 张姝, 郑爱娟, 刘国华, 蔡辉益, 刘伟. 饲粮添加壳寡糖和干酪乳杆菌对肉鸡生长性能、肌肉品质及抗氧化性能的影响. 动物营养学报, 2016, 28(5): 1450-1461. Li Y, Chang W H, Zhang S, Zheng A J, Liu G H, Cai H Y, Liu W. Effects of dietary chitosan oligosaccharide and Lactobacilluscasei on growth performance,meat quality and antioxidant function of broilers. Chinese Journal of Animal Nutrition, 2016, 28(5): 1450-1461. (in Chinese) [18] Zou X, Xiao R, Li H, Liu T, Liao Y, Wang Y, Wu S, Li Z. Effect of a novel strain of Lactobacillusbrevis M8 and tea polyphenol diets on performance, meat quality and intestinal microbiota in broilers. Italian Journal of Animal Science, 2018, 17(2): 396-407. [19] Li Z, Wang W, Liu D, Guo Y. Effects of Lactobacillusacidophilus on the growth performance and intestinal health of broilers challenged with Clostridiumperfringens. Journal of Animal Science and Biotechnology, 2018, 9(1): 25. [20] Sauvant D, Schmidely P, Daudin J J, St-Pierre N R. Meta-analyses of experimental data in animal nutrition. Animal, 2008, 2(8): 1203-1214. [21] Huang M K, Choi Y J, Houde R, Lee J W, Lee B, Zhao X. Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poultry Science, 2004, 83(5): 788-795. [22] Salarmoini M, Fooladi M H. Efficacy of Lactobacillusacidophilus as probiotic to improve broiler chicks performance. Journal of Agricultural Science and Technology, 2010, 13: 165-172. [23] Thanh N T, Loh T C, Foo H L, Hair-Bejo M, Azhar B K. Effects of feeding metabolite combinations produced by Lactobacillusplantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. British Poultry Science, 2009, 50(3): 298-306. [24] Loh T C, Thanh N T, Foo H L, HAIR-BEJO M, Azhar B K. Feeding of different levels of metabolite combinations produced by Lactobacillusplantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers. Animal Science Journal, 2010, 81(2): 205-214. [25] Peng Q, Zeng X F, Zhu J L, Wang S, Liu X T, Hou C L, Thacker P A, Qiao S Y. Effects of dietary Lactobacillusplantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poultry Science, 2016, 95(4): 893-900. [26] Shen X, Yi D, Ni X, Zeng D, Jing B, Lei M, Bian Z, Zeng Y, Li T, Xin J. Effects of Lactobacillusplantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Canadian Journal of Microbiology, 2014, 60(4): 193-202. [27] Taheri H R, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Efficacy of combined or single use of Lactobacillus crispatus LT116 and L.johnsonii LT171 on broiler performance. British Poultry Science, 2010, 51(5): 580-585. [28] 刘磊, 朱立贤. 芽孢乳杆菌对肉仔鸡生产性能、肠道发育和微生物菌群的影响. 动物营养学报, 2011, 23(12): 2136-2142. Liu L, Zhu L X. Effects of Sporolactobacillus on performance, intestinal development and microflora of broilers. Chinese Journal of Animal Nutrition, 2011, 23(12): 2136-2142. (in Chinese) [29] 梁海威, 朱海洋, 张琳, 白明昧, 张建营, 秦贵信, 甄玉国. 植物乳杆菌对肉鸡生长性能和血清生化指标的影响. 中国畜牧兽医, 2015, 42(3): 589-596. Liang H W, Zhu H Y, Zhang L, Bai M M, Zhang J Y, Qin G X, Zhen Y G. Effect of lactobacillus plantarum on growth performance and serum biochemical indices of broilers. China Animal Husbandry & Veterinary Medicine, 2015, 42(3): 589-596.(in Chinese) [30] 林显华, 李春凤, 王静, 王芳, 谷巍. 植物乳杆菌对肉鸡生长性能和蛋白质消化率的影响. 饲料广角, 2013(14): 28-30. Lin X H, Li C F, Wang J, Wang F, Gu W. Effects of lactobacillusplantarum on growth performance and protein digestibility of broilers. Feed China, 2013(14): 28-30.(in Chinese) [31] 赵巍, 孙喆, 王欣, 付丽, 梁海威, 甄玉国. 灭活植物乳杆菌培养物对肉仔鸡生长性能、盲肠菌群及血清生化指标的影响. 中国兽医学报, 2016, 36(8): 1440-1445. Zhao W, Sun Z, Wang X, Fu L, Liang H W, Zhen Y G. Effect of inactivated Lactobacillus cultures on growth performance, cecal microflora and serum biochemical indexes of broilers. Chinese Journal of Veterinary Science, 2016, 36(8): 1440-1445.(in Chinese) [32] 刘伟学, 武文斌. 干酪乳酸杆菌对肉鸡生长性能及消化功能的影响. 饲料与畜牧, 2011(12): 8-11. Liu W X, Wu W B. Effects of lactobacilluscasei on growth performance and digestive function of broilers. Feed and Husbandry, 2011(12): 8-11.(in Chinese) [33] 付果花. 发酵乳杆菌-Lactobacillusfermentum F-6对肉鸡生长性能及消化功能的影响[D]. 呼和浩特:内蒙古农业大学, 2010. Fu G H. Effects of Lactobacillusfermentum f-6 on growth performance and digestive function of broiler chickens[D]. Huhhot: Inner Mongolia Agricultural University, 2010.(in Chinese) [34] Shokryazdan P, Faseleh J M, Liang J B, Ramasamy K, Sieo C C, Ho Y W. Effects of a Lactobacillussalivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS One, 2017, 12(5): e0175959. [35] De C A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, Meluzzi A. Effect of dietary supplementation with Lactobacillusacidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS One, 2017, 12(5): e0176309. [36] Vantsawa P A,Umar T, Bulus T. Effects of probiotic lactobacillusacidophilus on performance of broiler chickens. Research Journal, 2017, 5(8):302-306. [37] 刘乃芝, 陈静, 崔诗法, 闫福海, 谷巍. 添加不同水平的植物乳杆菌对肉鸡生产性能和免疫机能的影响. 江西农业学报, 2012, 24(6): 108-111. Liu N Z, Chen J, Cui S F, Yan F H, Gu W. Effects of supplementing different levels of Lactobacillusplantarum on growth performance and immunity of Broilers. Acta Agriculturae Jiangxi, 2012, 24(6): 108-111.(in Chinese) [38] Aiba Y, Suzuki N, Kabir A M, Takagi A, Koga Y. Lactic acid-mediated suppression of Helicobacterpylori by the oral administration of Lactobacillussalivarius as a probiotic in a gnotobiotic murine model. American Journal of Gastroenterology, 1998, 93(11): 2097-2101. [39] Deraz S F, Karlsson E N, Hedström M, Andersson M M, Mattiasson B. Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillusacidophilus DSM 20079. Journal of Biotechnology, 2005, 117(4): 343-354. [40] Ao X, Zhang X, Shi L, Zhao K, Yu J, Dong L, Cao Y, Cai Y. Identification of lactic acid bacteria in traditional fermented yak milk and evaluation of their application in fermented milk products. Journal of Dairy Science, 2012, 95(3): 1073-1084. [41] Hussein A R, Khalaf Z Z, Samir Z, Samir R. Antibacterial activity of crud Bacteriocin-like substance against food borne bacterial pathogens. Iraqi Journal of Science, 2018, 59(1A): 16-24. [42] 赵红霞, 詹勇, 许梓荣. 乳酸菌的研究及其应用. 江西饲料, 2003, 1: 9-12. Zhao H X, Zhan Y, Xu Z R. Research and application of Lactobacillus. Jiangxi Feed, 2003, 1: 9-12.(in Chinese) [43] Wilson S, Norton P, Haverson K, Leigh J, Bailey M. Development of the palatine tonsil in conventional and germ-free piglets. Developmental & Comparative Immunology, 2005, 29(11): 977-987. [44] Von Mollendorff J W, Todorov S D, Dicks L M T. Comparison of bacteriocins produced by lactic-acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan Peninsula. Current Microbiology, 2006, 53(3): 209-216. [45] Bujalance C, Moreno E, Jimenez-Valera M, Ruiz- Bravo A. A probiotic strain of Lactobacillusplantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. International Journal of Food Microbiology, 2007, 113(1): 28-34. Effects of Lactobacillus Supplements on Growth Performance of Broilers: a Meta-analysisXING Shuang, FENG JingHai (Institute of Animal Science, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition, Beijing 100193) Abstract:【Objective】The purpose of present study was to analyze the effects of Lactobacillus supplements on the growth performance of broilers by meta-analysis. 【Method】A total of 24 articles, including 25 trials and 8 702 subjects, were retrieved from domestic and foreign databases. Reviewing Manager (version 5.3) was used to calculate the standardized mean difference (SMD)(the difference between Lactobacillus group and control group divided by the mean of standard deviation between the two groups). According to the number of samples used in different studies and the standard deviation determined by the indicators, the weights of different research results were determined, and several independent research results were summarized. According to I2 statistics, the heterogeneity of growth performance data was tested, and the publication bias was analyzed by funnel plot and egger test. The random effect model was used to analyze the continuous data for the significant heterogeneity of each index in this analysis and subgroup analysis was carried out according to Lactobacillus strains to explore the effects of different Lactobacillus on the growth performance of broilers.【Result】The analysis showed that Lactobacillus significantly increased the ADG (SMD=1.53, P<0.001) and reduced the F/G (SMD= -1.50, P<0.001) of broilers during 0-6 week period of the experiment, and had no significant effect on feed intake (P=0.470). Lactobacillus significantly increased the ADG of broilers (SMD=1.05, P<0.001) in the growing period, and had a tendency to improve ADG (SMD=0.52, P=0.090) in the finishing period, significantly reduced the growing F/G (SMD= -1.31, P<0.001) and the finishing F/G (SMD= -0.94, P<0.001). The growth-promoting effect of Lactobacillus on broilers was better than that the finishing period according to the value of SMD. Funnel plot and egger analysis showed that the bias of F/G (P=0.012) and ADFI (P=0.006) in the early stage reached a significant level, while the biases of other indicators were not significant (P>0.05). Sensitivity analysis found that random deletion of arbitrary literature data had little effect on the analysis of daily gain and feed-to-weight ratio, indicating that the above results were stable and were not affected by one or several articles. The heterogeneity test found that there was significant heterogeneity in the analysis results of each growth index (P<0.001), indicating that the results of different literatures differed greatly, possibly due to differences in the Lactobacillus species or feeding doses used in different studies. Subgroup analysis based on Lactobacillus species could reduce the heterogeneity of the meta-analysis. Subgroup analysis showed that L. plantarum promoted the daily weight gain (1.98, P<0.001) and feed conversion efficiency (-1.66, P<0.001) on broiler 0-6 week period better than L. casei (0.51, -0.68, P≤0.02) and L. johnsonii (1.15, -0.16, P≤0.02). 【Conclusion】In conclusion, the meta-analysis showed that Lactobacillus could increase the daily weight gain and feed conversion efficiency of broilers at different period, and had no significant effect on feed intake. The promotion effect of Lactobacillus was different, among which L. plantarum was better. Key words:Lactobacillus; broilers; growth performance; meta-analysis doi: 10.3864/j.issn.0578-1752.2020.01.017 开放科学(资源服务)标识码(OSID): 收稿日期:2019-03-07; 接受日期:2019-04-15 基金项目:国家重点研究发展计划(2016YFD0500509)、中国农业科学院科技创新工程(ASTIP-IAS09) (责任编辑 林鉴非)
|