|
里岔黑猪和巴里杂交猪达100 kg体重日龄校正系数研究
郑浩1,涂金敏2,熊秀萍2,张则凯1,李龙云1,黄黎斌2,黄智勇2,肖石军1,郭源梅1
(1江西农业大学省部共建种猪遗传改良与养殖技术国家重点实验室,南昌 330045;2江西山下投资有限公司,江西定南 341900)
摘要:【目的】估计里岔黑猪及其与巴克夏杂交猪(巴里猪)达100 kg体重日龄(D100)的校正系数CF和A,并比较两种校正系数的校正效果,为里岔黑猪和其他地方猪种D100的估计提供参考。【方法】以554头里岔黑猪、941头巴里1代和755头巴里2代猪为研究对象,利用润农性能测定系统,收集它们肥育期的体重和日龄数据。根据始测日龄≥60d、始测体重≥25 kg等标准对数据进行质控,质控后的数据用于CF和A的估计。CF是两条直线斜率的比值,其中分子是体重对日龄回归直线的斜率,分母是经过终测点(终测日龄和终测体重)和原点(日龄和体重均为0)直线的斜率。A是体重对日龄一元回归方程的截距,通过拟合体重对日龄的一元回归方程直接得到。校正系数估计出来后,用方差分析来检验性别和群体对校正系数的影响,并把估计的CF和A分别代入各自的校正公式,分别计算D100,即CF和A的校正日龄(D100CF和D100A)。通过t检验,比较D100CF和D100A之间是否存在显著差异,并计算它们之间的相关系数。然后利用每个个体的体重和日龄,分别建立日龄对体重的回归方程,并根据各自的回归方程计算达100 kg体重的回归日龄(D100reg)。通过计算D100CF和D100A与D100reg之间的相关系数及其与D100reg差值的平均数和标准差来比较CF和A的校正效果。最后用另外2个群体的校正系数来校正某个群体,计算D100CF和D100A与该群体D100reg的相关系数来评估校正系数的通用性。【结果】由于性别和群体显著影响校正系数,因此需要分性别和分群体估计校正系数。里岔黑猪、巴里1代和巴里2代阉公猪(母猪)的校正系数CF分别为1.426(1.346)、1.340(1.389)和1.372(1.380),A分别为60.65(54.15)、49.92(57.00)和54.25(57.53)。D100CF和D100A之间差异不显著(P = 0.3071),它们之间的相关系数为0.9998(P<0.0001)。D100CF和D100A与D100reg的相关系数均≥0.9917(P<0.0001),它们与D100reg差值的平均数分别为-0.1385和-0.2741d,标准差分别为2.5532和2.5446d,差异均不显著(P>0.05)。用另外2个群体的校正系数来校正某个群体,D100CF和D100A与该群体D100reg的相关系数均≥0.9793(P<0.0001)。【结论】本研究估计的D100校正系数CF和A与国家生猪产业体系使用的CF和A有较大差异。CF和A的校正效果没有显著差异,在适当的结测体重范围内,它们的校正效果都非常好。在研究的3个群体中,用另外2个群体的校正系数来校正某个群体的校正效果也非常好,说明里岔黑猪D100的校正系数可以为其他地方猪种D100的估计提供参考。
关键词:里岔黑猪;达100 kg体重日龄;校正系数CF;校正系数A
0 引言
【研究意义】达100 kg体重日龄(D100)用来度量猪只的生长速度,是种猪选育过程中一个非常重要的目标性状[1-2]。由于不能实时监测猪只的体重,且体重受采食和排泄状态等因素的影响,因此很难准确判断猪只达100 kg体重的实际日龄。在育种实践中,通常在一定的体重范围(80—105 kg)对猪只进行称重,然后利用校正系数通过校正公式来计算D100[3],因此,校正系数会直接影响D100估计值的准确性。【前人研究进展】杜洛克、长白和大白猪达50 kg[4]和100 kg体重日龄[5-6]的校正系数已见报道;地方品种达45日龄[7-8]和达50 kg体重[9]的校正系数也有报道,但D100的校正系数尚未见报道。目前,校正系数主要有两种:一种是加拿大种猪遗传改良中心采用的校正系数CF,即国家生猪产业体系2016年以前使用的校正系数[10];另一种是美国国家猪改良协会采用的校正系数A,即国家生猪产业体系目前使用的校正系数[11]。CF [12-15]和A [16-18]均被用来校正D100,但比较这2种校正系数的校正效果的研究报道较少[6]。【本研究切入点】里岔黑猪是山东省著名的地方品种,以多肋和大体型著称[19-20],是大型优质肉猪品种培育的理想素材[21-22],但是其生长速度较慢[23],有待于进一步选育提高。估计里岔黑猪D100的校正系数,能提高生长速度选择的准确性,加速生长速度的遗传改良。【拟解决的关键问题】本研究以里岔黑猪及其与巴克夏公猪杂交产生的杂种1代和2代为研究对象,估计它们D100校正系数CF和A,并比较CF和A的校正效果,为地方猪种及其杂交猪D100的校正提供借鉴。
1 材料与方法
1.1 试验猪只
里岔黑猪和巴里猪(巴克夏公猪与里岔母猪杂交后代,包括1代和2代)均来自江西山下投资有限公司定南阳林山下原种猪场(江西,定南)[21]。该场有润农性能测定系统(深圳,润农科技)18套,每年能完成约540头猪的生长肥育测定。本研究使用的生长数据收集于2014—2019年,共计2 250头,其中里岔黑猪554头(阉公猪52头,母猪502头)、巴里1代和2代分别为941头(阉公猪48头,母猪893头)和755头(阉公猪98头,母猪657头)。
在保幼期结束时,筛选健康的小猪,根据体重大小随机分组,每组12—14头。每组使用一套润农性能测定系统进行生长肥育测定,该系统会自动记录每个个体每一次采食的起止时间、采食量和体重。在肥育期间,采用统一的饲养管理方法,饲喂玉米-豆粕型全价配合饲料(可消化能为13MJ·kg-1,粗蛋白含量15%),自由采食和饮水。当测定猪只体重达100 kg左右时结束测定。
1.2 统计分析
1.2.1 数据处理和质控 从润农性能测定系统中导出每次采食的详细记录,包括测定站编号、耳号、电子耳标号、采食开始时间、采食结束时间、采食量和体重。利用个体每天所有的体重数据,剔除异常点后取平均数作为当天的体重;测定日龄等于测定日期减去出生日期。为了得到比较可靠的生长曲线,要求测定期≥30d、始测体重≥25 kg、终测体重在80—125 kg、始测日龄>60d和终测日龄<280d。用R语言(R3.4.3,维也纳,奥地利)的lm函数,对每个个体拟合日龄对体重的一元回归方程,剔除拟合度<0.7的个体(生长异常的个体)。然后利用lm函数对每个个体的一元回归方程进行优化:剔除平均体重与回归体重差异(>5 kg)最大的观测后再进行回归分析,直到所有的异常值都被剔除为止,这时得到最佳一元回归方程。计算每个个体最佳一元回归方程的截距、回归系数和拟合度,剔除拟合度小于0.95的个体,剩余个体用于后续分析。
1.2.2 D100校正系数的估计 校正系数CF是两条体重对日龄回归直线斜率(回归系数)的比值。第一条直线是最佳回归直线,第二条直线是经过终测点(终测日龄和终测体重)和原点(日龄和体重均为0)的直线。第一条直线的斜率除以第二条直线的斜率就是CF。校正系数A是体重对日龄一元回归方程的截距,通过拟合体重对日龄的一元回归方程直接得到。计算出每个个体的CF和A后,取它们各自的平均数作为群体的校正系数。
1.2.3 初生重、日增重、性别和群体对校正系数的影响 用R语言的plot函数,作日增重和校正系数之间的散点图,并用cor.test函数计算它们之间的相关系数。然后用lm函数拟合一个线性模型,并用anova函数做F检验,检验初生重、日增重、性别和群体是否对校正系数产生显著影响。
1.2.4 D100的估计 根据1.2.1建立的最佳一元回归方程,代入100 kg体重,就可以计算出每个个体达100 kg体重的回归日龄(D100reg)。由于每个个体使用各自的回归系数和截距,因此D100reg可以看作D100的期望值,即真实值的无偏估计值。
利用1.2.2估计的CF和A,根据下列公式分别计算出CF和A达100 kg体重的校正日龄,即D100CF和D100A:
pagenumber_ebook=181,pagenumber_book=2495
1.2.5 CF和A校正日龄的比较 为了比较CF和A的校正效果,把每个个体的D100reg作为真值,用R语言的cor.test函数计算校正日龄与D100reg的相关系数。相关系数越高,说明校正日龄越准确。用mean和sd函数,分别计算校正日龄与D100reg差值的平均数和标准差。平均数的绝对值越小,说明校正日龄越准确。标准差越小,校正日龄越精确。
1.2.6 校正系数的通用性 为了研究校正系数的通用性,把一个群体估计的校正系数去校正另两个群体的D100,然后用R语言的cor.test函数计算校正日龄与该群体D100reg之间的相关系数。相关系数越高,通用性越好。
2 结果
2.1 数据质控
一共有896头试验猪只没有通过质量控制,其中209头测定期<30d,242头始测体重<25 kg,330头终测体重不在80—125 kg之间,19头始测日龄<60d,1头终测日龄>280d,39头拟合度<0.7,66头优化后的拟合度<0.95。剩余的1 344头通过了质控,其中里岔黑猪204头(阉公猪22头,母猪182头)、巴里1代644头(阉公猪31头,母猪631头),巴里2代496头(阉公猪64头,母猪432头)。
2.2 D100校正系数的估计
由于群体极显著地影响CF和A的估计值(见2.3),因此需分群体进行估计。三个群体CF和A的估计值见表1。里岔黑猪母猪的CF极显著小于巴里1代和2代的CF,巴里1代和2代的CF之间没有显著差异(P = 0.5534)。巴里2代的A极显著大于另外2个群体,另2个群体的A之间没有显著差异(P = 0.1834)。
D100CF和D100A与D100reg差值的平均数分别为-0.1385和-0.2741d,标准差分别为2.5532和2.5446d,差异均不显著(P>0.05)。图3是D100CF和D100A与D100reg之差与终测体重之间的散点。终测体重离目标体重(100 kg)越远,D100CF和D100A的误差越大。
表1 校正系数的简单统计量
Table 1 Simple statistics of the correction coefficients
pagenumber_ebook=182,pagenumber_book=2496
2.3 初生重、日增重、性别和群体对校正系数的影响
方差分析结果显示初生重对CF(P = 1.6×10-8)和A(P = 5.2×10-11)均产生极显著影响。从日增重和校正系数的散点图(图1)可以看出:日增重极显著地影响CF(P<2.2×10-16)和A(P<2.2×10-16),并与它们存在显著的线性关系,相关系数分别为0.6932(P<2.2×10-16)和0.7424(P<2.2×10-16)。性别对校正系数CF(P = 0.1759)没有影响,但对A(P = 0.0013)产生显著影响。群体极显著地影响CF(P = 0.0089)和A(P = 0.0017)的估计。
2.4 D100的估计结果
D100reg的简单统计量见表2。在这3个群体种中,里岔黑猪D100最大,平均为236.23d;其次是巴里2代,平均为215.78d;巴里1代最短,平均为208.93 d。
2.5 CF和A校正日龄的比较
图2是D100reg、D100A和D100CF的散点图。从图中可以看出它们之间呈强相关,尤其是D100CF和D100A之间。D100CF和D100A与D100reg之间的相关系数分别为0.9918(P<0.0001)和0.9917(P<0.0001),D100CF和D100A之间的相关系数为0.9998(P<0.0001)。
听得心烦,陈颐磊也让人架起大喇叭,让几个留过洋,会日语的军官对着喇叭对喊:小鬼子,你们听着,爷爷八十六军在这里。你们睁大狗眼看看,八十六军阵地前面,你们丢了多少尸体,他们,就是你们的末日。想进攻就放手来吧,86军八十六军老少爷们奉陪到底……
pagenumber_ebook=183,pagenumber_book=2497
图1 校正系数与日增重之间的散点图
Fig.1 Scatter plots between adjusted coefficients and ADG
表2 达100 kg体重回归日龄的简单统计量
Table 2 Simple statistics of the regressive days to 100 kg
pagenumber_ebook=183,pagenumber_book=2497
pagenumber_ebook=183,pagenumber_book=2497
图2 回归日龄和校正日龄之间的散点图
Fig.2 Scatter plots between regressive and adjusted days to 100 kg
pagenumber_ebook=184,pagenumber_book=2498
图3 校正日龄减回归日龄之差与终测体重之间的散点图
Fig.3 Scatter plots between body weight at the end of performance test and the difference of adjusted and regressive days to 100 kg
2.6 校正系数通用性结果
表3是用另2个群体的校正系数去校正某个群体的D100CF和D100A与该群体D100reg之间的相关系数。这些相关系数都在0.979以上,且都达到极显著水平(P<0.0001)。
表3 校正系数通用性结果
Table 3 The transplantation of correction coefficients
pagenumber_ebook=184,pagenumber_book=2498
所有的相关系数均达到极显著水平(P<0.0001)。All correlation coefficients are highly significant (P<0.0001)
3 讨论
本研究估计了里岔黑猪及其与巴克夏杂交1代和2代D100的校正系数CF和A,并比较了它们的校正效果,为里岔黑猪D100的校正以及校正系数CF和A的选择提供参考。
提高肉猪的上市体重,能够改善肉质[24],增大眼肌面积[25],降低每公斤猪肉的分摊成本,提高经济效应[26],增加肉猪上市体重已经成为一种趋势[27-29]。因此,达110 kg体重日龄可能会逐渐取代现行的D100,成为未来种猪选育的目标性状。根据体重和日龄之间近似的线性关系,D100的校正系数也可以用于达110 kg体重日龄的估计,但是需要把终测体重调整到95—125 kg之间,以降低估计的误差。
里岔黑猪D100的校正系数与杜洛克、长白和大白的校正系数不一样。里岔黑猪的校正系数A大于美国国家猪改良协会[30]和国家生猪产业体系[11]杜洛克、长白和大白相应的校正系数A,也大于韩国猪性能测定中杜洛克、长白和大白达90 kg体重日龄使用的校正系数A [31]。里岔黑猪的校正系数CF小于加拿大种猪遗传改良中心杜洛克、长白和大白D100的校正系数CF[3]。借鉴这些猪种的校正系数会降低里岔黑猪D100估计的准确性,从而影响生长速度的选择效果。
校正系数A和CF都是通过建立日龄对体重的直线回归方程来校正D100,但在建立线性模型时略有不同。校正系数A利用终测点(终测体重,终测日龄)和截距(0,A)来计算回归系数,并建立回归方程:
pagenumber_ebook=184,pagenumber_book=2498
把终测点和目标点(100 kg,达100 kg体重日龄)分别代入上述回归方程,得到下列方程组:
pagenumber_ebook=185,pagenumber_book=2499
两式相减,经过简单转换后就可以得到校正公式(见1.2.4)。
校正系数CF则利用终测点和原点(0,0)来计算回归系数。这个回归系数(相当于全程ADG)比实际的回归系数(相当于测定期ADG)小,所以需要把全程回归系数校正成实际的回归系数,即乘以校正系数CF(测定期ADG与全程ADG的比值)。日龄对体重的回归方程:
pagenumber_ebook=185,pagenumber_book=2499
把体重 = 100 kg代入上式,就可以得到D100的CF校正公式(见1.2.4)。
CF的校正日龄和A的校正日龄之间没有显著差异(P = 0.8247),相关系数为0.9998(P<0.0001),说明它们的校正效果几乎一致(图2)。它们的校正日龄与回归日龄之间也不存在显著差异(P值分别为0.7312和0.8613),与回归日龄的相关系数均大于0.9837(P<0.0001),说明它们的校正准确性都很高。目前,校正系数CF [12-14]和A [16-18]均被用来校正D100,也间接说明它们的校正效果没有显著差异,否则校正效果差的校正系数将会被另一种校正系数所取代。这一结果与张哲等的研究结果不同,他们的研究结果显示校正系数A的校正效果优于校正系数CF的校正效果[6]。根据他们的这一结果,国家生猪产业体系用校正系数A替换了原来使用的校正系数CF[11]。
终测体重与目标体重越接近,校正日龄的误差就越小(图3)。但在生产实践中,终测体重与目标体重越接近,操作起来就越困难。在选择终测体重范围时,既要考虑校正误差,又要兼顾可操作性。当终测体重与目标体重的差异在15 kg以内时,即终测体重的范围为30 kg,校正误差较小(平均误差在5 kg以内,误差小于5%)。因此,目标体重为100 kg和110 kg时终测体重分别为85—115 kg和95—125 kg比较适宜。
校正系数受许多因素的影响,如日增重、群体、性别等,但是日增重对它的影响最大(P<2.2×10-16)。从校正系数A和CF与日增重之间的散点图(图1)和它们之间的相关系数可以看出:日增重越大的个体,其A和CF也越大。
群体也极显著地影响校正系数,不同群体中A(P = 0.0017)和CF(P = 0.0089)存在显著差异。由于校正系数是体重和日龄的函数,因此它受体重和日龄的影响,特别是初生重(P≤1.6×10-8)和日增重(P<2.2×10-16)。群体间初生重和日增重(数据略)均存在极显著的差异(P<2.2×10-16),从而导致群体间的校正系数存在极显著差异。
性别对校正系数A(P = 0.0013)的影响显著,但是对CF(P = 0.1759)的影响不显著,其主要原因可以是阉公猪数量较少造成检验效率偏低。由于不同性别的猪只生长速度是不一样的[32-33],因此在校正D100时应根据猪只的性别使用相应的校正系数。加拿大种猪遗传改良中心[3]和国家生猪产业技术体系[11]在校正D100时不同性别使用不同的校正系数。但是也有不分性别,公母猪使用同一个校正系数,如美国国家猪改良协会[30]。
校正系数是体重和日龄的函数,因此受生长曲线的影响。虽然本研究使用的3个群体有一定的亲缘关系,但是它们的生长曲线并不一致,从达100kg体重日龄就可以看出(表2)。巴里1代达100kg体重日龄最短,巴里2代其次,而里岔黑猪最长,差异极显著(P<2.2×10-16)。巴里猪是巴克夏公猪和里岔母猪杂交的后代,生长速度显著高于里岔黑猪。用巴里群体的校正系数去校正里岔黑猪群体D100,校正效果很好。由于里岔黑猪的生长曲线与大部分地方猪种比较相似,因此推测用里岔黑猪的校正系数去校正其他地方品种,其校正效果也会较好。
4 结论
里岔黑猪和巴里猪D100的校正系数A和CF与国家生猪产业体系使用的A和CF有较大差异。A和CF的校正效果没有显著差异,当结测体重在85—115 kg时,它们对D100的校正效果都非常好。在本研究的3个群体中,用另外2个群的校正系数来校正某个群体的D100,其校正效果也非常好,说明里岔黑猪D100的校正系数可以为其他地方猪种D100的估计提供参考。
致谢:本研究得到江西农业大学省部共建种猪遗传改良与养殖技术国家重点实验室主任黄路生教授的大力支持。
References
[1] WANG K, DEWU L, JULES H-S, JIE C, CHENGKUN L,ZHENFANG W, MEIYING F, NING L, JIAN-FENG L.Genome wide association analysis reveals new production trait genes in a male duroc population.Plos One, 2015, 10(9): e0139207.
[2] 彭潇, 尹立林, 梅全顺, 王海燕, 刘小磊, 朱猛进, 李新云, 付亮亮,赵书红.猪主要经济性状的基因组选择研究.畜牧兽医学报, 2019,50(02): 215-221.PENG X, YIN L L, MEI Q S, WANG H Y, LIU X L, ZHU M J, LI X Y, FU L L, ZHAO S H.A study of genome selection based on the porcine major economic traits. Acta Vetrinaria et Zootechnica Sinica,2019, 50(02): 215-221.(in Chinese)
[3] 全国畜牧兽医总站.全国种猪遗传评估方案(试行).北京,2000:60.National Animal Husbandry & Veterinary Service.National Pig Genetic Evaluate Scheme (test).Beijing, 2000: 60.(in Chinese)
[4] 刘望宏, 张勤, 胡军勇, 倪德斌, 熊远著.瘦肉型种猪早期生长性状校正公式的制定及评估.华中农业大学学报, 2010, 29(4):469-474.LIU W H, ZHANG Q, HU J Y, NI D B, XIONG Y Z.Desing and evaluation of adjusted equations for early growth performance of commercial breeding swines.Journal of Huazhong Agricultural University, 2010, 29(4): 469-474.(in Chinese)
[5] 陈斌.瘦肉型猪的场内遗传评估及遗传分析研究 [D].长沙:湖南农业大学, 2005.CHEN B.Studies on the on-farm genetic evaluation and genetic analysis of lean type swine [D].Changsha: Hunan Agricultural University, 2005.(in Chinese)
[6] 张哲, 张豪, 陈赞谋, 李加琪.种猪育种性能测定校正公式研究.中国畜牧杂志, 2015, 51(16): 49-54.ZHANG Z, ZHANG H, CHEN Z M, LI J Q.Development of correction formula for prodcution traits in swine breeding.Chinese Journal of Animal Science, 2015, 51(16): 49-54.(in Chinese)
[7] 王林云, 蒙妙枝.姜曲海猪断奶前后的体重校正方法.中国畜牧杂志, 1982(2): 12-13.WANG L Y, MENG M Z.Methods to adjust bodyweight of Jiangquhai pig before and after weaning.Chinese Journal of Animal Science, 1982(2): 12-13.(in Chinese)
[8] 吕凤林, 黎继华.内江仔猪体重校正方法的研究.四川畜牧兽医,1993(2): 1-3.LÜ F L, LI J H.A study of the method to adjust bodyweights of Neijiang pig.Sichuan Animal and Veterinary Sciences, 1993(2): 1-3.(in Chinese)
[9] 杨岸奇, 吴买生, 向拥军, 陈斌, 李朝辉, 张善文, 刘伟, 吴攀峰.沙子岭猪生长性状校正公式的制定.猪业科学, 2015, 32(2):132-134.YANG A Q, WU M S, XIANG Y J, CHEN B, LI C H, ZHANG S W,LIU W, WU P F.Formulating the adjustment formula for growth trait of Shaziling pig.Swine Industry Science, 2015, 32(2): 132-134.(in Chinese)
[10] NY/T 822-2004.中华人民共和国农业行业标准-种猪生产性能测定规程.北京: 中华人民共和国农业部, 2004.NY/T 822-2004.People's Republic of China agricultural industry standards – Rules for performance testing of breeding pig.Beijing:Ministry of Agriculture of the People's Republic of China, 2004.(in Chinese)
[11] 全国生猪遗传改良计划工作小组领导办公室.关于调整种猪达100 kg体重日龄和达100 kg体重活体背膘厚校正公式的通知.2016.Leading Group of Work Office of China Swine Genetic Improvement Program.Notice on adjusting the calibration formula of days to 100 kg and backfat thickness at 100 kg in vivo for breeding pigs.2016.(in Chinese)
[12] GIBSON J P, QUINTON V M, SIMEDREA P.Responses to selection for growth and backfat in closed nucleus herds of Hampshire and Duroc pigs.Canadian Journal of Animal Science, 2001, 81: 17-23.
[13] HU B, MO D L, WANG X Y, LIU X H, CHEN Y S.Effects of back fat, growth rate, and age at first mating on Yorkshire and Landrace sow longevity in China.Journal of Integrative Agriculture, 2016,15(12): 2809-2818.
[14] LI F E, LEI M G, ZHENG R, ZUO B, JIANG S W, DENG C Y,XIONG Y Z.The Effects of estrogen receptor locus on reproductive tracts components and performance traits in large white×Meishan F2 offspring.Asian-Australasian Journal of Animal Sciences, 2004, 17(9):1223-1226.
[15] WU P, WANG K, YANG Q, ZHOU J, CHEN D, LIU Y, MA J, TANG Q, JIN L, XIAO W, LOU P, JIANG A, JIANG Y, ZHU L, LI M, LI X,TANG G.Whole-genome re-sequencing association study for direct genetic effects and social genetic effects of six growth traits in Large White pigs.Scientific Reports, 2019, 9(1): 9667.
[16] GUO Y, QIU H, XIAO S, WU Z, YANG M, YANG J, REN J,HUANG L.A genome-wide association study identifies genomic loci associated with backfat thickness, carcass weight, and body weight in two commercial pig populations.Journal of Applied Genetics, 2017,58(4): 499-508.
[17] ABELL C E, MABRY J W, DEKKERS J C M, STALDER K J.Genetic and phenotypic relationships among reproductive and postweaning traits from a commercial swine breeding company.Livestock Science, 2012, 145(1-3): 183-188.
[18] KUHLERS D L, JUNGST S B.Correlated responses in reproductive and carcass traits to selection for 200-day weight in Landrace pigs.Journal of Animal Science, 1993, 71(3): 595-601.
[19] 于虹, 雷蕾, 崔超, 王涛.里岔黑猪品种选育标准技术规范.猪业科学, 2017, 34(3): 126-126.YU H, LEI L, CUI C, WANG T.Standard technical specification for breeding of Licha black pig.Swine Industry Science, 2017, 34(3):126-126.(in Chinese)
[20] 黑立新, 朱应民, 张淑二, 张敏, 刘展生.里岔黑猪保种现状及研究进展.养殖与饲料, 2018, 5: 17-20.HEI L X, ZHU Y M, ZHANG S E, ZHANG M, LIU Z S.Current situation of breed conservation and research progress of Licha black pig.Animals Breeding and Feed, 2018, 5: 17-20.(in Chinese)
[21] 李龙云, 肖石军, 黄黎斌, 黄智勇, 涂金敏, 熊秀萍, 郭源梅, 黄路生.巴克夏和里岔黑猪不同杂交组合生产性能的比较研究.畜牧兽医学报, 2018, 49(01): 26-35.LI L Y, XIAO S J, HUANG L B, HUANG Z Y, TU J M, XIONG X P,GUO Y M, HUANG L S.Comparative studies on the productive performances among different crosses of Berkshire and Licha black pig.Acta Veterinaria et Zootechnica Sinica, 2018, 49(01): 26-35.(in Chinese)
[22] 刘艳花, 郭建华, 李书勋, 纪志和.关于加快里岔黑猪新品种研究开发的思考.山东畜牧兽医, 2017, 38(06): 20-21.LIU Y H, GUO J H, LI S X, JI Z H.Thoughts on accelerating the research and development of new breed using Licha black pig.Shandong Journal of Animal Science and Veterinary Medicine, 2017,38(06): 20-21.(in Chinese)
[23] 陈鹏, 杨在宾, 张庆, 姜淑贞.里岔黑猪与“杜长大”三元猪生长性能和免疫性能的对比研究.猪业科学, 2017, 34(1): 131-133.CHEN P, YANG Z B, ZHANG Q, JIANG S Z.Comparative the growth and immunity performances of Licha black pig to Duroc×Landrace×Yorkshire pigs.Swine Industry Science, 2017, 34(1):131-133.(in Chinese)
[24] GUO J F, WU Y, HU H M, WANG J Y.Studies on carcass performance and meat quality and its changes with body weight of finishing pigs.Southwest China Journal of Agricultural Sciences,2008, 21(2): 460-463.
[25] CHOI Y M, OH H K.Carcass performance, muscle fiber, meat quality,and sensory quality characteristics of crossbred pigs with different live weights.Korean Journal for Food Science of Animal Resources, 2016,36(3): 389-396.
[26] PARK M J, HA D M, SHIN H W, LEE S H, KIM W K, HA S H,YANG H S, JEONG J Y, JOO S T, LEE C Y.Growth Efficiency,Carcass Quality Characteristics and Profitability of 'High'-Market Weight Pigs.Journal of Animal Science & Technology, 2007, 49(4):459-470.
[27] KIM Y S, KIM S W, WEAVER M A, LEE C Y.Increasing the pig market weight: world trends, expected consequences and practical considerations.Asian-Australasian Journal of Animal Sciences, 2005,18(4): 590-600.
[28] CORREA J A, FAUCITANO L, LAFOREST J P, RIVEST J,MARCOUX M.Effects of slaughter weight on carcass composition and meat quality in pigs of two different growth rates.Meat Science,2006, 72(1): 91-99.
[29] PARK B C, LEE C Y.Feasibility of increasing the slaughter weight of finishing pigs.Journal of Animal Science & Technology, 2011, 53(3):211-222.
[30] NSIF.Guidelines for Uniform Swine Improvement Programs.Washington D.C.USA.1996.
[31] YUN H C, MAHBOOB A, CHO C I, CHOI J G, CHOI I S, CHOI T J,CHO K H, PARK B H.Genetic parameters of pre-adjusted body weight growth and ultrasound measures of body tissue development in three seedstock pig breed populations in Korea.Asian-Australasian Journal of Animal Sciences, 2015, 28(12): 1696-1702.
[32] GUO Y, HUANG Y, HOU L, MA J, CHEN C, AI H, HUANG L, REN J.Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches.Genetics Selection Evolution, 2017, 49(1): 21.
[33] BOLLEN P J, MADSEN L W, MEYER O, RITSKES-HOITINGA J.Growth differences of male and female Gottingen minipigs during ad libitum feeding: a pilot study.Laboratory Animal, 2005, 39(1): 80-93.
Estimating the Correction Coefficient of Days to 100 kg in Licha Black Pig and Its Intercross with Berkshire
ZHENG Hao1, TU JinMin2, XIONG XiuPing2, ZHANG ZeKai1, LI LongYun1, HUANG LiBin2,HUANG ZhiYong2, XIAO ShiJun1, GUO YuanMei1
(1State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045;2Jiangxi Shanxia Investment Company Limited, Dingnan 341900, Jiangxi)
Abstract: 【Objective】The aims of this study were to estimate the correction coefficients CF and A of days to 100 kg (D100)and to compare their correction powers to each other in Licha black pig and its intercross with Berkshire boars, so as to provide a reference of correction coefficients for estimating D100 in Licha black pig and other Chinese indigenous pig breeds.【Method】In this study, 554 Licha black pigs with pigs from its intercross with Berkshire boars, including 941 F1 pigs and 755 F2 pigs, were randomly selected, and their body weights and ages in days had been automatically collected everyday by Winland performance testing system during their fatting periods.The data quality control was carried out according to the criteria, such as age ≥60 days and body weight≥25 kg at start testing.Only the data have been passed quality control, which were used to estimate CF and A.CF was the ratio of two slopes, namely, the numerator was the slope of the regression line of weight to age, and the denominator was the slope of the straight line through the end point of performance testing (age and body weight at the testing end) and the original point (both age and weight were 0).A was the intercept of the regression equation of body weight to age, which could be obtained directly by fitting a regression equation of body weight to age.After the correction coefficients were estimated, an analysis of variance was carried out to test whether gender and population had effects on them, and the estimated CF and A were substituted into their respective correction formulae to calculate D100 (D100CF and D100A).A t-test was used to test whether there was a significant difference between D100CF and D100A, and their correlation coefficient was also calculated.Then, the regression equation of body weight to age for each individual was established, and regressive D100 (D100reg) for each individual was estimated by its regression equation.The corrected accuracies of CF and A were compared to each other by the correlation coefficients of D100CF and D100A with D100reg,and the means and standard deviations of the differences of D100CF and D100A to D100reg.Finally, the correction coefficients estimated from other two populations were used to estimate D100 in a certain population, and the correlation coefficients of D100CF and D100A with D100reg were calculated to evaluate whether the correction coefficient estimated from one population could be used in other populations.【Result】Gender and population had significant effects on the correction coefficients, so it was necessary to estimate the correction coefficient for each gender in each population.CF of stags (gilts) in Licha black pig and the F1 and F2 of its intercross with Berkshire boars were 1.426 (1.346), 1.340 (1.389) and 1.372 (1.380), respectively, and A were 60.65 (54.15), 49.92(57.00) and 54.25 (57.53), respectively.There was no significant difference between D100CF and D100A (P = 0.3071), and their correlation coefficient was 0.9998 (P < 0.0001).The correlation coefficients of D100CF and D100A with D100reg were equal or greater than 0.9917 (P<0.0001), there was no significant (P>0.05) between the differences of D100CF and D100A to D100reg.The means of the differences were -0.1385 and -0.2741 days, and the standard deviations were 2.5532 and 2.5446 days, respectively.The correlation coefficients of D100reg with D100CF and D100A, which were adjusted using the correction coefficients estimated from other two populations, were equal or greater than 0.9793 (P < 0.0001).【Conclusion】The correction coefficients CF and A of D100 estimated in this study were quite different from their counterparts using in National Swine Industry Technology System.There was no significant difference between the correction powers of CF and A, and both CF and A had a very high correction power under an appropriate range of body weight at the end of performance testing.In the three populations, the correction coefficients from other two populations had a very high correction power to a certain population, which indicated that the correction coefficient of D100 from Licha black pig could be used as a reference to other Chinese indigenous pig breeds.
Key words: Licha Black pig; days to 100 kg; correction coefficient CF; correction coefficient A
|
|