奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 182|回复: 0

公主岭霉素诱导对育苗期水稻耐冷性的影响

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-12-22 12:40:22 | 显示全部楼层 |阅读模式
扫码加微信
公主岭霉素诱导对育苗期水稻耐冷性的影响
安俊霞1,2,赵宇1,张正坤1,史海鹏3,纪东铭4,曹洪翼5,杜茜1,李启云1

(1吉林省农业科学院植物保护研究所/吉林省农业微生物重点实验室/农业农村部东北作物有害生物综合治理重点实验室,长春 130033;2吉林农业大学植物保护学院,长春 130118;3伊通满族自治县农业技术推广总站,吉林伊通 130700;4四平市植物保护站,吉林四平 136000; 5哈尔滨师范大学生命科学与技术学院,哈尔滨 150080)

摘要:【目的】探讨在低温条件下公主岭霉素对水稻幼苗生长及耐冷相关基因表达、抗逆防御酶活性的影响,明确施用公主岭霉素后育苗期水稻耐冷性的变化。【方法】以‘吉粳88’为试验材料,经公主岭霉素水浸提液浸种引发后播种,调查不同温度下稻种萌发和幼苗生长状况并计算稻种发芽临界温度。将农抗“769”固体发酵物干燥粉碎后添加到水稻育苗基质中,以‘吉粳88’为试验材料,在立针期模拟倒春寒生境对水稻幼苗施加冷胁迫处理,在处理后逐渐缓慢升温并于1—8 d内连续采样,升温至28℃后每隔7 d采样一次;以‘吉宏6号’为试验材料,大棚育苗待水稻幼苗长至一叶一心期采样;采用实时荧光定量PCR(RT-qPCR)技术,分析模拟生境及大棚育苗环境中幼苗叶片耐冷相关基因OsNAC6、OsSADMC、OsETR4、OsZFP151的表达状况,并检测移栽前大棚秧苗叶片中防御酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)活性的变化。【结果】公主岭霉素能够提高稻种发芽率和发芽指数,缩短发芽时间,其对幼苗生长的促进作用随温度的降低而逐渐明显,G-500X表现最好,使稻种萌发的临界温度降低了4.09%,并以该浓度为基础进行后续的试验研究。光照培养箱低温模拟倒春寒气候条件,低温胁迫下公主岭霉素可调控OsNAC6、OsSADMC、OsETR4表达量的提升,并通过加快响应速度,实现快速反应以应对低温胁迫,对照处理主要通过调控OsZFP151的响应速度和表达量提升应对低温胁迫,但公主岭霉素处理下的水稻幼苗该基因表达量亦得到提升。水稻幼苗在立针期受到低温胁迫后,公主岭霉素处理的幼苗在低温胁迫后OsNAC6、OsSADMC、OsETR4表达量峰值出现时间较对照早1—2 d,且分别比对照提高38.57%、74.66%、130.61%;OsZFP151最高表达量的时间较对照迟2 d,但最高表达量比对照提高了34.91%。大棚育苗,固体发酵物干粉在育苗基质中的最适添加量为8 g·m-2,添加后一叶一心期的水稻幼苗叶片中OsNAC6、OsSADMC、OsETR4、OsZFP151的表达量均高于对照,其中OsNAC6、OsSADMC、OsETR4表达量显著提升,OsNAC6在添加量为8 g·m-2时表达量最高,为261.20;当固体发酵物干粉添加量为5 g·m-2时,OsSADMC表达量最高,比对照提高了126.30%;当固体发酵物干粉添加量为8 g·m-2时,OsETR4表达量最高,比对照提高了359.81%。移栽前处于四叶一心期的幼苗,育苗基质中添加公主岭霉素诱导幼苗叶片中SOD、POD、PPO、PAL酶活性均高于对照,其中起主要作用的酶为SOD、PPO,活性分别比对照提高57.18%、28.53%。【结论】公主岭霉素在水稻育苗期施用可降低稻种的发芽临界温度,促进幼苗生长,显著提升幼苗的秧苗素质;公主岭霉素通过提升耐冷相关基因的表达量、加快低温胁迫的响应速度及提高幼苗体内防御酶的活性,促进水稻幼苗耐冷性的增强。

关键词:公主岭霉素;水稻;耐冷性;基因表达;防御酶活性

0 引言
【研究意义】水稻是世界三大粮食作物之一,是我国最主要的粮食作物[1]。作为喜温作物,其对温度反应敏感,温度在15—20℃时就会对水稻的正常生长产生不利影响[2]。我国北方地区早春气候异常,低温对植物种子的萌发和幼苗的生长有很大的影响,而种子萌发很大程度上决定了植物的出苗、生长以及收获时稻米的产量和品质。【前人研究进展】提高植物耐冷性比较有效的方法包括采用传统育种培育耐低温品种,如荷兰育种专家培育出抵抗12℃的黄瓜品种,以及我国育种专家选育的耐低温品种‘津优3号’‘津优20号’等[3];植物经低温处理后,细胞结构和细胞内各种物质将发生一系列形态和生理生化等方面的适应性变化[4],如细胞膜透性变大[5],丙二醛(malondialdehyde,MDA)含量升高[6],超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等保护酶的活性升高[7-9],因此通过种子变温处理、低温锻炼等方法可以提高植物耐冷性[10-11];增施化学肥料、脱落酸(ABA)[12]和多效唑[13]等化学试剂,亦可提高植物耐冷能力;另有研究表明,利用空气和植物根系部分不同种类的有益微生物来促进植物生长,可以提高植物对逆境的抵抗能力[14-16],进而克服低温对植物产生的不利影响。不吸水链霉菌公主岭变种(Streptomyces ahygrosscopicus gongzhulingensis n. var.)(农抗“769”)是一株对病原真菌具有广谱抑菌作用的生防链霉菌,其代谢产物被称为公主岭霉素,是一种自然生物合成的混合制剂,具有较好的水溶性,通过液体发酵或固体培养均可获得。研发初期,农抗“769”及公主岭霉素主要应用于玉米、高粱、小麦等作物土传病害的防治[17]。【本研究切入点】农抗“769”及公主岭霉素可诱导植株体内防御酶活性的变化,从而提高植株的抗病性,并对植物具有促进生长和提升产量、品质的作用[18-19],然而公主岭霉素诱导对植物应对非生物胁迫的影响尚未见报道。【拟解决的关键问题】通过考察公主岭霉素引发后稻种发芽临界温度、幼苗在低温时的生长状况、幼苗耐冷基因表达及防御酶活性的变化,探究公主岭霉素对水稻耐冷能力的影响,为提升水稻秧苗素质、解决育苗期低温冷害对水稻生产带来损失的问题提供新思路,为应用于水稻育苗期以公主岭霉素为主要成分的生物制剂的研发和施用方式的确定提供数据支持。

1 材料与方法
1.1 供试材料
水稻品种:‘吉粳88’‘吉宏6号’,市售。生物炭无土育苗基质购自沈阳凡宇园艺科技有限公司。芸苔素内酯(Y)市售,EZ-DNA away RNA Min-Preps Kit、AVM第一链cDNA合成试剂盒、2×SG Fast qPCR Master Mix均购自上海生工生物工程有限公司。

农抗“769”固体发酵物干粉:以玉米碴为培养基质,灭菌后接种农抗“769”,28℃充分培养后自然晾晒,干燥并粉碎[20]。公主岭霉素水浸提液:将农抗“769”固体发酵物按质量体积比1﹕2以纯净水4℃静置浸提24 h,离心取上清液[20]。

农抗“769”固体发酵物及公主岭霉素水浸提液质量检测:农抗“769”固体发酵充分培养后按质量体积比1﹕2加入无菌水,平板涂布,检测培养物含菌量,达到1×106 cfu/mL以上为充分培养。充分培养后的农抗“769”固体发酵培养物自然晾晒,干燥后粉碎,过100目筛备用。将培养物粉末与水按质量体积比1﹕2混合,制备水浸提液;以玉米大斑病菌(Setosphaeria turcica)为指示菌,通过抑菌圈法检测水浸提液对病原菌的抑制情况,抑菌圈直径达到3.0 cm以上;将符合上述两个指标的培养物用于实验和生产中。

1.2 试验设计
用光照培养箱在实验室模拟水稻遭遇倒春寒的生境,考察公主岭霉素诱导下水稻幼苗的耐冷性。利用光照培养箱种植水稻,生长条件设定为温度28℃、光照12 h·d-1、相对湿度75%、光照强度5 000 lx,播种后用公主岭霉素(G)水浸提液500倍稀释液(G-500X)将土壤完全润透,以清水润湿的土壤为对照,每个处理设3次重复。待幼苗长至立针期后进行低温胁迫,低温胁迫时保持光照10 h·d-1、相对湿度75%、光照强度4 000 lx,温度变化过程包括:10℃胁迫1 d,16℃胁迫7 d,恢复28℃培养14 d。从低温胁迫起始日每天采集幼苗叶片,-80℃保存,用于测定幼苗叶片中耐冷相关基因表达量变化。

生产性大棚育苗考察公主岭霉素诱导下水稻幼苗耐冷性试验于2019年4月14日至5月8日在吉林省伊通满族自治县建国村育苗大棚中进行。育苗大棚在育苗期间田间管理及农事操作专人专管,除受气候因素影响外,其他保持不变。棚内生长温度约为21—25℃,相对湿度为50%—90%。实验室模拟环境公主岭霉素最佳使用量为1.5 g·m-2[19],本研究中,以实验室模拟环境中的最佳使用量为起点,在田间生产中以添加量差异设置质量梯度,以不添加为对照,分别以1.5、3、5、8、10 g·m-2的添加量将粉碎的农抗“769”固体发酵物拌入育苗基质中,至幼苗长至一叶一心期,采集幼苗叶片-80℃保存,用于测定幼苗叶片中耐冷相关基因表达量变化。以耐冷相关基因表达量数据为参考,选择基因表达量高的处理,待幼苗长至四叶一心期,移栽前采集叶片,-80℃保存,测定幼苗叶片中防御酶活性的变化。以不添加作为对照,每个处理设3次重复。

1.3 方法
1.3.1 种子萌发及幼苗生长的测定 选取大小均匀一致且籽粒饱满的水稻种子,参照前期研究结果设置公主岭霉素水浸提液浓度[19]。分别以公主岭霉素水浸提液500倍稀释液(G-500X)、1 000倍稀释液(G-1000X),芸苔素内酯1 000倍稀释液(Y-1000X)及清水浸种引发,25℃浸种48 h,每处理设3次重复,每个重复100粒种子。育苗盘中称取相同质量的基质,将引发后的种子分别播种于育苗盘中,分别在16、18、20、22、24、26℃黑暗条件下萌发[21],每天统计发芽数(以幼芽长度达到种子长度的1/2,且幼根与种子等长为发芽标准,两者需要同时满足),每天记录3次。计算发芽率、发芽指数、平均发芽时间、临界温度等。计算公式如下:

width=54.1,height=24.5 (1)
式中,G:种子发芽率,n:发芽种子数,N:供试种子总数。

GI=Σ Gt/Dt (2)

式中,GI:发芽指数,Gt:逐日发芽种子数,Dt:相应发芽天数。

width=52.8,height=29 (3)
式中,T:平均发芽时间。

发芽临界温度的计算是由发芽指数(y)对发芽温度(x)作回归分析,回归曲线与x轴交点(y=0)即为低温发芽起始。发芽指数与温度的回归关系在0.01和0.05差异水平上经t测验考察回归方程的可靠性[21-22]。

待水稻发芽后按昼/夜=12 h/12 h生长至第10天,测定株高、幼苗鲜重,并将幼苗在电热恒温干燥箱100℃杀青10 min,80℃烘12 h至恒重,称干重。

1.3.2 水稻幼苗叶片耐冷基因表达量测定 采用实时荧光定量PCR(RT-qPCR)技术对幼苗叶片耐冷相关基因进行表达差异分析。以水稻组成型表达基因Actin作为内参基因,以相对定量的方法对目的基因的表达量进行检测。采用2-∆∆CT法计算相对表达量[23],每个试验样品进行3次独立的生物学重复。目标基因、基因功能及引物序列见表1。

1.3.3 水稻幼苗叶片防御酶活性测定 苯丙氨酸解氨酶(PAL)的活性测定采用苯丙氨酸紫外吸收法[28];多酚氧化酶(PPO)的活性测定采用邻苯二酚-紫外吸收法[28];超氧化物歧化酶(SOD)的活性测定采用氮蓝四唑自氧化法[29];过氧化氢酶(CAT)的活性测定采用钼酸铵法[30]。

表1 4个耐冷相关基因RT-qPCR的引物

Table 1 Primers of 4 cold tolerance genes for RT-qPCR


1.4 数据处理
采用Excel 2007处理数据及作图,采用DPS15.10高级版进行单因素方差分析,IBM SPSS Statistics 20进行回归分析(Tukey法)。

2 结果
2.1 公主岭霉素引发后水稻在冷胁迫下的生长变化
随种植温度降低,稻种发芽时间增长,发芽率和发芽指数均呈下降趋势,幼苗生长速度、鲜重和干重均降低。公主岭霉素引发后,在稻种发芽至二叶一心生长期前,不同生长温度表现出不同的作用效果。在生长温度较高时,水稻幼苗会出现徒长的现象。如表2所示,24—26℃恒温种植,公主岭霉素处理稻种其作用效果主要表现在墩苗壮苗上,幼苗株高比对照显著降低,G-500X和G-1000X均有较好的效果。22℃恒温种植较适宜水稻的生长,除幼苗干重外各处理间各生长指标均无显著差异,但G-500X和G-1000X幼苗鲜重和干重与对照相比均有所降低,表明幼苗叶片的含水量及鲜嫩程度降低,有助于提高幼苗抵御如病害侵染、温度骤降等逆境的能力。16—20℃低温逆境下,公主岭霉素处理水稻种子可以提高种子发芽率和发芽指数,缩短发芽时间,促进幼苗生长。与26℃相比,种植温度为16℃时CK、Y-1000X、G-500X、G-1000X等不同处理间平均发芽时间分别延迟了4.90、3.64、4.34、4.83 d,发芽率分别降低了25.33%、31.33%、16.66%、26.66%,发芽指数分别降低98.28%、87.58%、80.71%、93.86%,G-500X引发后稻种发芽指数最高。公主岭霉素引发后,16℃低温逆境,G-500X处理稻种各生长指标表现最好,平均发芽时间比对照降低了6.81%,发芽率、发芽指数和株高分别比对照提高了12.21%、38.45%和34.41%。

表2 公主岭霉素对种子发芽及幼苗生长的影响

Table 2 The effects of gongzhulingmycin on seed germination and seedling growth


表中数据为平均值±标准误,数据后不同小写字母表示同一温度同一调查指标的不同处理间差异显著(P<0.05)The data in the table are shown as mean ±SE, different lowercase letters after the data indicate significant differences among different treatments of the same temperature and the same survey index (P<0.05)

2.2 公主岭霉素对水稻育苗期耐冷性的影响
2.2.1 公主岭霉素引发对稻种发芽临界温度的影响 发芽临界温度愈低,种子发芽时对低温的耐受能力愈强[21]。本研究中,种子在不同引发条件下,发芽临界温度略有差异,表现为CK>G-1000X>G-500X>Y-1000X(表3),其中,G-500X浸种引发后的发芽临界温度为10.32℃,比对照降低了4.09%。

2.2.2 公主岭霉素诱导对水稻幼苗耐冷基因表达的影响 水稻幼苗在立针期遭遇低温胁迫后,叶片中OsNAC6、OsSADMC、OsETR4及OsZFP151先后对胁迫作出了响应,4个基因最高表达量均高于对照,其中,OsNAC6最高表达量为89.50,而对照仅为64.59,比对照提高38.57%;OsSADMC最高表达量为85.74,比对照提高74.66%;OsETR4最高表达量为84.38,比对照提高130.61%;OsZFP151最高表达量为29.91,比对照提高34.91%。4个基因的表达均呈单峰趋势,主要在胁迫早期表达,施用公主岭霉素加快了幼苗对低温胁迫的响应速度,OsNAC6、OsSADMC和OsETR4均比对照响应速度快,基因表达的峰值出现时间分别在冷胁迫后的1、3和6 d,分别比对照提前2、1和2 d,而对照中OsZFP151最先对胁迫作出了响应(图1)。

表3 公主岭霉素对种子发芽临界温度的影响

Table 3 The effect of gongzhulingmycin on critical temperature of seed germination


水稻育苗时在育苗土中添加农抗“769”固体发酵物粉末,不同添加量对幼苗耐冷基因表达产生的影响略有不同,但OsNAC6、OsSADMC、OsETR4的相对表达量均比对照高。如图2,OsNAC6相对表达量在添加量为8 g·m-2时最高,5 g·m-2其次,表达量分别为261.20、161.29;OsSADMC在添加量5 g·m-2时最高,8 g·m-2其次,分别比对照高126.30%、100.10%;OsETR4在添加量8 g·m-2时最高,5 g·m-2其次,分别比对照高359.81%、113.73%。OsZFP151的相对表达量与其他3个基因的变化趋势不同,随着添加量的增加,基因表达量先下降后上升,在添加量为8 g·m-2时比对照高1.46%,差异不显著。水稻育苗期以5—8 g·m-2农抗“769”固体发酵物拌土较为适宜,对水稻幼苗耐冷性的提升有促进作用。

2.2.3 公主岭霉素对水稻叶片防御酶活性的影响 水稻育苗时在育苗土中添加农抗“769”固体发酵物粉末,水稻幼苗长至四叶一心期时,幼苗叶片中SOD、POD、PPO、PAL等防御酶活性均较对照显著提升。SOD活性为343.02 U/mg FW,比对照提高了57.18%(图3);对苯丙烷类代谢途径的影响主要表现在显著提高了PPO的活性,其活性为501.80 U/mg FW,比对照提高了28.53%(图4)。

3 讨论
发芽率、发芽势和发芽指数等指标均是衡量种子发芽质量的关键指标,可以反映种子发芽的速度和整齐度[31],发芽临界温度与田间苗期耐冷性总选择指数紧密相关,通过室内鉴定可以对田间耐冷反应作出可靠估计,是评估水稻耐冷性有效的鉴定方法[21]。低温条件下水稻种子发芽率和发芽势降低[32],本研究中,适宜浓度的公主岭霉素处理稻种对稻种发芽和幼苗生长无不利影响,公主岭霉素通过诱导提高种子发芽率、发芽指数,促进幼苗生长、缩短发芽时间应对低温胁迫,提高水稻幼苗的耐冷性。

在田间生产中,水稻在立针期最易受到冷害的影响,从而降低幼苗的生长势和秧苗素质,导致育苗期立枯病发生,移栽时水稻秧苗素质降低,秧苗田间抗病性差,收获时稻米产量和品质降低,因此立针期水稻秧苗的耐冷性对于水稻生产具有巨大的影响。植物通过响应逆境胁迫的信号传导途径将胁迫信号传递至细胞内,调控基因表达并对逆境胁迫作出适应性反应[33]。NAC转录因子是植物所特有的转录因子,OsNAC6是细胞核内基因组基因,在植物对逆境胁迫的响应和生长发育的过程中扮演非常重要的角色,在整合和转导非生物和生物逆境胁迫信号过程中也发挥着重要的作用[24,34],低温、干旱、高盐、脱落酸、茉莉酸、机械损伤和病原菌侵染都会诱导其表达,OsNAC6过表达的植株呈现出较高的抗逆性[24]。腐胺、亚精胺和精胺等多胺广泛参与植物生长发育和响应环境刺激,是植物适应逆境胁迫的重要调节物质[35],S-腺苷甲硫氨酸脱羧酶(SADMC)是多胺合成代谢过程中起调控作用的关键酶[36],作为一种调控因子,主要调控植物体内的腐胺、亚精胺和精胺等多胺的积累量,从而影响植物体内的DNA、RNA和蛋白质生物合成,促进植物的生长发育,影响植物应答环境胁迫,增强植物的抗逆性[2]。OsETR4是乙烯受体基因,是乙烯信号转导的上游原件,乙烯受体作为乙烯信号传导途径中结合并响应乙烯的初始成分,其通过细胞表面糖蛋白的识别与乙烯结合,改变蛋白质构象、激活或抑制相关响应调控因子或功能基因的表达来完成信号转导[37]。低温可促进OsETR4的表达,从而提升植株的抗逆性[25]。C2H2型锌指蛋白主要参与植物生长发育,并且对逆境胁迫的响应有着重要的作用[38-40],OsZFP151受低温诱导后通过调控CBF类基因的表达、影响可溶性糖、脯氨酸含量的增加以及MDA含量的减少来提高水稻耐冷性[26]。本研究模拟田间倒春寒环境,对立针期幼苗施加低温胁迫,公主岭霉素的施用促进了耐冷基因表达量的提升并加快了幼苗对低温胁迫的响应速度。在生产性育苗过程中,公主岭霉素拌土对水稻幼苗叶片中OsNAC6、OsSADMC及OsETR4表达量提升的促进作用明显,表明公主岭霉素的施用可以提高水稻对低温的耐受能力。

width=401.15,height=606.1
图1 模拟倒春寒环境下公主岭霉素对水稻幼苗耐冷基因表达的诱导效果

Fig. 1 The induction effect of gongzhulingmycin on cold tolerance genes expression of rice seedlings under the simulated cold environment in late spring

width=468.2,height=275.45
图2 生产性育苗中公主岭霉素对水稻幼苗耐冷基因表达的诱导效果

Fig. 2 The induction effect of gongzhulingmycin on cold tolerance genes expression of rice seedlings in the seedling raising in production

width=277.25,height=145.8
图3 公主岭霉素对水稻幼苗叶片主要植物氧化酶活性的影响

Fig. 3 The effects of gongzhulingmycin on plant oxidase activities of the rice seeding

width=279.2,height=147.7
图4 公主岭霉素对水稻幼苗叶片苯丙烷类代谢关键酶活性的影响

Fig. 4 The effects of gongzhulingmycin on activities of key enzymes in phenylpropanoid metabolism of the rice seeding

PAL、PPO、SOD、CAT等是植物体内重要的保护酶,其功能包括参与活性氧清除,酚类、木质素和植保素等抗病相关物质的合成,破坏病原菌细胞壁,使植物产生对病原菌的抵抗能力等[41-44],研究表明,在盐胁迫后,高粱的SOD、POD、CAT和APX(抗坏血酸过氧化物酶)活性均有所提高,且抗性品种比敏感品种增幅大[45]。在适当的低温胁迫下不同小麦品种的SOD、POD和CAT均有不同程度的提高,抗寒性与SOD、CAT和POD呈极显著正相关[46]。本研究中,公主岭霉素在播种前施入,幼苗叶片中SOD、CAT、PAL、PPO活性均有提升,其中SOD和PPO活性比对照提升的幅度显著,表明公主岭霉素的施入提升了幼苗应对冷胁迫的能力。

4 结论
(1)适宜浓度的公主岭霉素在低温环境下可以提升稻种的发芽率,促进水稻的幼苗建成,提高水稻的秧苗素质;(2)适宜浓度公主岭霉素诱导,可以提升水稻幼苗叶片中耐冷基因的表达量及对逆境的响应速度;(3)适宜浓度公主岭霉素诱导,可以增强水稻幼苗叶片中防御酶的活性。

综上,在水稻育苗期合理施用公主岭霉素,可以诱导提升水稻幼苗的抗寒能力,增强幼苗苗势,从而降低不利的气候条件对秧苗造成的危害。

References

[1] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17): 3404-3414.

ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K. Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese)

[2] 胡晓晨, 张婷, 杨圣, 秦巧, 石英尧, 王文生, 傅彬英. 水稻冷胁迫响应基因OsSADMC功能标记的开发和利用. 中国水稻科学, 2015, 29(5): 475-480.

HU X C, ZHANG T, YANG S, QIN Q, SHI Y Y, WANG W S, FU B Y. Development and application of a functional marker for the cold stress responsive gene OsSADMC. Chinese Journal of Rice Science, 2015, 29(5): 475-480. (in Chinese)

[3] 马俊. 丛枝菌根真菌对黄瓜幼苗低温胁迫的缓解效应及其调控机理[D]. 杨凌: 西北农林科技大学, 2016.

MA J. Alleviative effects and its mechanism of exogenous arbuscular mycorrhizal fungi (AMF) on cucumber seedlings under cold stress[D]. Yangling: Northwest A&F University, 2016. (in Chinese)

[4] 乌凤章, 王贺新, 徐国辉, 张自川. 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 2015, 51(7): 116-128.

WU F Z, WANG H X, XU G H, ZHANG Z C. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 2015, 51(7): 116-128. (in Chinese)

[5] SHEIKH S, NOH J, SEONG M H, HJUNG G T, KIM J M. Consequences of chilling stress on watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] germplasm lines at seedling stage. Horticulture, Environment, and Biotechnology, 2015, 56(1): 79-88.

[6] HAWRYLAK-NOWAK B, MATRASZEK R, SZYMAŃSKA M. Selenium modifies the effect of short-term chilling stress on cucumber plants. Biological Trace Element Research, 2010, 138(1/3): 307-315.

[7] 项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响. 草业学报, 2019, 28(4): 81-94.

XIANG H T, QI D Q, LI W, ZHENG D F, WANG Y X, WANG T T, WANG L Z, ZHENG X N, YANG C J, ZHOU H, ZHAO H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress. Acta Prataculturae Sinica,2019, 28(4): 81-94. (in Chinese)

[8] XIANG H T, WANG T T, ZHENG D F, WANG L Z, FENG Y J, LUO Y, LI R, LI Z J, MENG Y, LI W, WANG L M, YANG C J. ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar. Brazilian Journal of Botany, 2017, 40(4): 853-860.

[9] 董春娟, 李亮, 曹宁, 尚庆茂, 张志刚. 苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用. 应用生态学报, 2015, 26(7): 2041-2049.

DONG C J, LI L, CAO N, SHANG Q M, ZHANG Z G. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. Chinese Journal of Applied Ecology, 2015, 26(7): 2041-2049. (in Chinese)

[10] JANDA T, MAJLÁTH I, SZALAI G. Interaction of temperature and light in the development of freezing tolerance in plants. Journal of Plant Growth Regulation, 2014, 33(2): 460-469.

[11] CHEN J H, TIAN Q Q, PANG T, JIANG L B, WU R L, XIA X L, YIN W L. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, populus euphratica. BMC Genomics, 2014, 15: 326.

[12] CUEVAS J C, LÓPEZ-COBOLLO R, ALCÁZAR R, ZARZA X, KONCZ C, ALTABELLA T, SALINAS J, TIBURCIO A F, FERRANDO A. Putrescine is involved in arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology, 2008, 148(2): 1094-1105.

[13] 徐秋曼, 陈宏, 高虹, 程景胜. 多效唑提高水稻幼苗抗低温能力的机理初探. 西北植物学报, 2002, 22(5): 1236-1241.

XU Q M, CHEN H, GAO H, CHENG J S. The biochemical mechanism study on improvement of PP333 on the cold resistance of the rice seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(5): 1236-1241. (in Chinese)

[14] 刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展. 菌物研究, 2017, 15(1): 70-88.

LIU R J, TANG M, CHEN Y L. Recent advances in the study of mycorrhizal fungi and stress resistance of plants. Journal of Fungal Research, 2017, 15(1): 70-88. (in Chinese)

[15] THEOCHARIS A, CLEMÉNT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures. Planta,2012, 235(6): 1091-1105.

[16] GARG N, SINGLA P. Naringenin- and funneliformis mosseae- mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in cicer arietinum L. genotypes under salt stress. Journal of Plant Growth Regulation, 2015, 34(3): 595-610.

[17] 隋丽, 徐文静, 杜茜, 陈光, 董英山, 李启云. 放线菌769发酵液对水稻体内主要防御酶活性的影响. 吉林农业大学学报, 2009, 31(4): 382-384, 389.

SUI L, XU W J, DU Q, CHEN G, DONG Y S, LI Q Y. Effect of actinomycetes 769 fermentation products on main defense enzyme activity of rice. Journal of Jilin Agricultural University, 2009, 31(4): 382-384, 389. (in Chinese)

[18] 张振鲁, 隋丽, 张佳诗, 李启云, 王金刚, 汪洋洲, 盛岩, 杜茜. 链霉菌769诱导对百日草抗病性的影响. 中国植保导刊, 2013, 33(12): 14-17.

ZHANG Z L, SUI L, ZHANG J S, LI Q Y, WANG J G, WANG Y Z, SHENG Y, DU Q. Inducing effect of streptomyces gongzhulingensis 769 on systemic resistance of zinnia elegans. China Plant Protection, 2013, 33(12): 14-17. (in Chinese)

[19] 安俊霞, 李晓光, 汪洋洲, 张正坤, 马嵩岳, 张静, 杨会营, 文松, 杜茜, 李启云. 公主岭霉素在水稻育秧期应用技术研究. 东北农业科学, 2019, 44(2): 28-33.

AN J X, LI X G, WANG Y Z, ZHANG Z K, MA S Y, ZHANG J, YANG H Y, WEN S, DU Q, LI Q Y. High efficiency application technology of gongzhulingmycin during rice seedling stage. Journal of Northeast Agricultural Sciences, 2019, 44(2): 28-33. (in Chinese)

[20] 吉林省农科院植保所. 代汞拌种剂农抗769. 农业科技通讯, 1978(2): 32.

Institute of Plant Protection, Jilin Academy of Agricultural Sciences. Mercury seed dressing with Streptomyces gongzhulingensis n. var..Bulletin ofAgricultural Science and Technology, 1978(2): 32. (in Chinese)

[21] 吴江. 吉林地区甜玉米种子低温发芽临界温度的研究. 种子, 2018, 37(3): 96-97, 119.

WU J. Study on the critical temperature of germination of sweet corn seed in Jilin region. Seed, 2018, 37(3): 96-97, 119. (in Chinese)

[22] 曾霞, 王彦荣, 胡小文. 垂穗披碱草种子的萌发适宜温度及温度阈值. 草业科学, 2011, 28(6): 988-992.

ZENG X, WANG Y R, HU X W. Research on seed germination optimum temperature and temperature threshold of Elymus nutans. Pratacultural Science, 2011, 28(6): 988-992. (in Chinese)

[23] LIVAK K, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.

[24] LEE D K, CHUNG P J, JEONG J S, JANG G, BANG S W, JUNG H, KIM Y S, HA S H, CHOI Y D, KIM J K. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 2017, 15(6): 754-764.

[25] YAU C P, WANG L, YU M, ZEE S Y, YIP W K. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. Journal of Experimental Botany, 2004, 55(397): 547-556.

[26] 黄凯. 水稻C2H2型转录因子OsZFP151在低温胁迫中的功能研究[D]. 长春: 吉林大学, 2017.

HUANG K. Functional analysis of C2H2 transcription factor OsZFP151 in rice (Oryza sativa L.) under low temperature stress[D]. Changchun: Jilin University, 2017. (in Chinese)

[27] 关可兴. 水稻耐冷性相关转录因子OsbZIP32的功能分析[D]. 长春: 吉林大学, 2015.

GUAN K X. Functional analysis of transcriptional factor, OsbZIP32 for cold tolerance in rice[D]. Changchun: Jilin University, 2015. (in Chinese)

[28] 麦麦提艾力·热合曼, 海利力·库尔班, 郭立华, 邱德文. 灰霉菌激活蛋白诱导抗病相关的酶活性提高番茄抗病性. 中国生物防治学报, 2014, 30(6): 780-786.

RAHMAN M, KURBAN H, GUO L H, QIU D W. Botrytis cinerea activator protein induce resistance-related enzyme activities and enhancement of disease resistance in tomato plants. Chinese Journal of Biological Control, 2014, 30(6): 780-786. (in chinese)

[29] 原向阳, 郭平毅, 张丽光, 王鑫, 赵锐, 郭秀, 宋喜娥. 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响. 中国农业科学, 2010, 43(4): 698-705.

YUAN X Y, GUO P Y, ZHANG L G, WANG X, ZHAO R, GUO X, SONG X E. Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean [glycine max (L.) merr.] seedlings. Scientia Agricultura Sinica, 2010, 43(4): 698-705. (in chinese)

[30] 郭彩明, 陈宗明, 陈春丽. 精氨酸脱羧酶基因AtADC2通过调节超氧化物歧化酶和过氧化氢酶活性增强拟南芥耐盐性. 植物生理学报, 2015, 51(7): 1067-1074.

GUO C M, CHEN Z M, CHEN C L. AtADC2 enhances salt tolerance through regulating activities of superoxide dismutase and catalase in arabidopsis thaliana. Plant Physiology Journal, 2015, 51(7): 1067-1074. (in chinese)

[31] KUMAR B, VERMA S K, SINGH H P. Effect of temperature on seed germination parameters in Kalmegh (Andrographis paniculataWall.ex Nees.). Industrial Crops and Products, 2011, 34(1): 1241-1244.

[32] 刘雪梅,尚庆茂,张志刚. 辣椒不同品种种子萌芽期耐低温性及评价方法研究. 中国生态农业学报,2010,18(3): 521-527.

LIU X M, SHANG Q M, ZHANG Z G. Low-temperature tolerance of pepper at germination stage and its evaluation method. Chinese Journal of Eco-Agriculture,2010, 18(3): 521-527. (in chinese)

[33] 郭仰东, 张磊, 李双桃, 曹芸运, 齐传东, 王晋芳. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展. 中国农业科学, 2018, 51(6): 1167-1181.

GUO Y D, ZHANG L, LI S T, CAO Y Y, QI C D, WANG J F. Progresses in research on molecular biology of abiotic stress responses in vegetable crops. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181. (in chinese)

[34] NAKASHIMA K, TRAN L S, VAN NGUYEN D, FUJITA M, MARUYAMA K, TODAKA D, ITO Y, HAYASHI N, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. ThePlant Journal, 2007, 51(4): 617-630.

[35] KUSANO T, BERBERICH T, TATEDA C, TAKAHASHI Y. Polyamines: essential factors for growth and survival. Planta, 2008, 228(3): 367-381.

[36] ROYA M, WU R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 2002, 163(5): 987-992.

[37] 张楠楠, 薛冬, 崔晓霞, 赵晋铭, 郭娜, 王海棠, 邢邯. 大豆组成型三重反应基因GmCTR1的克隆与功能分析. 中国农业科学, 2017, 50(16): 3082-3091.

ZHANG N N, XUE D, CUI X X, ZHAO J M, GUO N, WANG H T, XING H. Cloning and functional analysis of the GmCTR1 in soybean. Scientia Agricultura Sinica, 2017, 50(16): 3082-3091. (in chinese)

[38] 茹京娜, 于太飞, 陈隽, 陈明, 周永斌, 马有志, 徐兆师, 闵东红. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选. 中国农业科学, 2017, 50(13): 2411-2422.

RU J N, YU T F, CHEN J, CHEN M, ZHOU Y B, MA Y Z, XU Z S, MIN D H. Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins. Scientia Agricultura Sinica,2017, 50(13): 2411-2422. (in chinese)

[39] 侯思宇, 孙朝霞, 郭彬, 王玉国, 李贵全, 韩渊怀. 大豆两个C2H2型转录因子基因序列特征及表达分析. 植物生理学报, 2014, 50(5): 665-674.

HOU S Y, SUN Z X, GUO B, WANG Y G, LI G Q, HAN Y H. Cloning and expression analysis of two C2H2 transcription factors in soybean. Plant Physiology Journal, 2014, 50(5): 665-674. (in chinese)

[40] HUANG J, SUN S J, XU D Q, YANG X, BAO Y M, WANG Z F, TANG H J, ZHANG H S. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 2009, 389(3): 556-561.

[41] RAY P D, HUANG B W, TSUJI Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012, 24(5): 981-990.

[42] KORAMUTLA M K, KAUR A, NEGI M, VENKATACHALAM P, BHATTACHARYA R. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). Planta, 2014, 240(1): 177-194.

[43] 乔俊卿, 张心宁, 梁雪杰, 刘永锋, 刘邮洲. 枯草芽孢杆菌PTS-394诱导番茄对灰霉病的系统抗性. 中国生物防治学报, 2017, 33(2): 219-225.

QIAO J Q, ZHANG X N, LIANG X J, LIU Y F, LIU Y Z. Plant system resistance triggered by root-colonizing bacillus subtilis PTS-394 and its control effect on tomato gray mold. Chinese Journal of Biological Control, 2017, 33(2): 219-225. (in chinese)

[44] HAO Z N, WANG L P, HE Y P, LIANG J G, TAO R X. Expression of defense genes and activities of antioxidant enzyme in rice resistance to rice stripe virus and small brown planthopper. Plant Physiology and Biochemistry, 2011, 49(7): 744-751.

[45] 孙璐, 黄瑞冬. 高粱幼苗保护酶系统对盐胁迫的初期响应. 沈阳农业大学学报, 2014, 45(2): 134-137.

SUN L, HUANG R D. Responses to salt stress of protective enzyme system in sorghum seedlings. Journal of Shenyang Agricultural University, 2014, 45(2): 134-137. (in chinese)

[46] 李春燕, 徐雯, 刘立伟, 杨景, 朱新开, 郭文善. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015, 26(7): 2015-2022.

LI C Y, XU W, LIU L W, YANG J, ZHU X K, GUO W S. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chinese Journal of Applied Ecology, 2015, 26(7): 2015-2022. (in chinese)

Induction of Cold Tolerance in Rice at the Breeding Stage by Gongzhulingmycin
AN JunXia1,2, ZHAO Yu1, ZHANG ZhengKun1, SHI HaiPeng3, JI DongMing4, CAO HongYi5, DU Qian1, Li QiYun1

(1Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key laboratory of Agricultural Microbiology/Key laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture and Rural Affairs, Changchun 130033; 2College of Plant Protection, Jilin Agricultural University, Changchun 130118; 3Agricultural Technology Extension Station of Yitong Manchu Autonomous County, Yitong 130700, Jilin; 4Plant Protection Station of Siping City, Siping 136000, Jilin; 5Life Science and Technology Academy, Harbin Normal University, Harbin 150080)

Abstract:【Objective】The objective of this study is to investigate the effects of gongzhulingmycin on rice seedling growth, cold tolerance genes expression and defense enzyme activities based on chilling stress exposure, and to elucidate the change in cold tolerance induced by gongzhulingmycin at the breeding stage of rice.【Method】Rice variety ‘Jijing88’was used as the experimental material, the seed germination and seedling growth were investigated under different temperatures and the critical temperature of seed germination was calculated after seed priming by gongzhulingmycin. The solid fermentation product of gongzhulingmycin was powdered and added into the rice seedling substrate before sowing. Taking ‘Jijing88’ as the experimental material, the rice seedlings were subjected to cold stress treatment in simulated cold environment in late spring at the needle appearance stage of rice. Gradually warmed up and sampled continuously within 1-8 d after treatment and sampled every 7 days when plant temperature raised to 28℃. Taking ‘Jihong 6’ as the experimental material, the rice seedlings were raised in the greenhouse and sampled when the seedlings grew to one leaf at a time. The expression of 4 cold tolerance genes (OsNAC6, OsSADMC, OsETR4 and OsZFP151) under the simulated cold environment in late spring and greenhouse seedling environment was analyzed by real-time quantitative PCR (RT-qPCR). The changes of defense enzyme activities such as superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) in greenhouse seedlings before transplanting were detected.【Result】The gongzhulingmycin could improve seed germination rate and germination index, shorten mean germination time, and its promoting effect on seedling growth was gradually obvious with the decrease of temperature. G-500x showed the best performance, which reduced the critical temperature of rice seed germination by 4.09%, and the subsequent experimental study was carried out based on this concentration. At the condition of low temperature simulation of the late spring cold, the application of gongzhulingmycin significantly increased the expression of OsNAC6, OsSADMC, OsETR4, and rapid response could be achieved to cope with low temperature stress by accelerating the response speed. The control mainly regulated the response speed and expression of OsZFP151 to cope with low temperature stress, but the expression of OsZFP151 was also increased after gongzhulingmycin application compared to the control. After the rice seedlings were subjected to low temperature stress at the needle appearance stage of rice, the expression peaks of OsNAC6, OsSADMC and OsETR4 in the seedlings treated with gongzhulingmycin appeared 1-2 d earlier than that in the control, and were increased by 38.57%, 74.66% and 130.61%, respectively, compared with the control.The maximum expression of OsZFP151 was 2 d later than that of the control, but the maximum expression was 34.91% higher than that of the control. The optimum added weight of the solid fermentation productivepowder of gongzhulingmycin was 8 g·m-2 in rice seedling substrate in the greenhouse seedling raising.when the seedlings grew to one leaf at a time after the addition of gongzhulingmycin, the expression levels of OsNAC6, OsSADMC, OsETR4 and OsZFP151 in the leaves were higher than those in the control group. The expression of OsNAC6, OsSADMC and OsETR4 was significantly increased.when the added weight was 8g·m-2, the expressionlevel of OsNAC6 was the highest (261.20). when the added weight was 5g·m-2, the expressionlevel of OsSADMCwas the highest, which was increased by 126.30% than that of the control. when the added weight was 8g·m-2, the expressionlevel of OsETR4was the highest, which was increased by 359.81% than that of the control. Gongzhulingmycin could increase the defense enzyme activities of rice seedlings at the four-leaf stage before transplanting. The activities of SOD, POD, PPO and PAL were all increased, especially the SOD and PPO activities increased by 57.18% and 28.53%, respectively.【Conclusion】Proper application of gongzhulingmycin before sowing can decrease the critical temperature of germination, promote the growth of seedlings, significantly improve the seedling quality, increase the expression levels of cold tolerance genes, improve the response speed to low temperature stress and raise defense enzyme activities to stimulate the cold tolerance in rice seedlings.

Key words:gongzhulingmycin; rice; cold tolerance; gene expression; defense enzyme activity



奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-11-24 16:02

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表