|
猕猴桃多酚在山羊肉冷藏中延缓氧化和改善品质的作用
古明辉,刘永峰,申倩,乔春艳
(陕西师范大学食品工程与营养科学学院,西安 710062)
摘要:【目的】研究猕猴桃疏果(“疏花疏果”中丢弃的果实)在羊肉冷藏中的作用,为延长冷藏山羊肉的货架期,保持山羊肉品质,延缓山羊肉氧化提供参考。【方法】以蒸馏水处理为空白组,分别用1 mg∙mL-1的猕猴桃疏果多酚、表儿茶素、山梨酸钾溶液对山羊肉喷淋,自封袋包装,置于冰箱4℃冷藏。在8 d货架期内分别测定山羊肉显微结构、物性指标、pH、脂肪酸含量、硫代巴比妥酸反应物值(TBARS)以及挥发性盐基氮(TVB-N)。【结果】随着时间延长,4组山羊肉均变得不紧致、形状离散,其肌纤维排列逐渐疏松、结构松弛。在冷藏期间4组山羊肉的硬度均呈现降低趋势,前3 d的硬度值排序为:山梨酸钾组>表儿茶素组>空白组>疏果多酚组,5 d后各组硬度值逐渐接近;在冷藏结束时疏果多酚组、表儿茶素组、山梨酸钾组和空白组的硬度分别较初始值降低了50.52%、41.73%、39.63%和51.56%。4组山羊肉的弹性均呈先降低后稳定的趋势,其中,前3 d疏果多酚组的弹性值均低于其余3组;在冷藏结束时疏果多酚组、表儿茶素组、山梨酸钾组及空白组的弹性分别较初始值降低了45.23%、33.34%、44.64%和41.31%。4组山羊肉的咀嚼性整体上呈降低趋势,且在冷藏结束时疏果多酚组、表儿茶素组、山梨酸钾组及空白组的咀嚼性分别较初始值降低72.06%、61.46%、62.00%和67.37%。疏果多酚组的内聚性和回复性较为稳定,山梨酸钾组的内聚性较为稳定。随着时间的延长,疏果多酚组多不饱和脂肪酸(PUFA)含量较为稳定,表儿茶素与山梨酸钾组的PUFA含量在第6天出现峰值,空白组PUFA含量呈下降趋势;在冷藏结束时,疏果多酚组的PUFA含量分别为表儿茶素、山梨酸钾及空白组的1.11、1.40和1.86倍。疏果多酚组单不饱和脂肪酸(MUFA)含量先上升后降低且在第4天达到最高值,其余3组的MUFA含量呈下降趋势;在冷藏结束时,疏果多酚的MUFA含量分别为表儿茶素、山梨酸钾及空白组的1.10、1.17和1.21倍。疏果多酚、表儿茶素和空白组的饱和脂肪酸(SFA)及总脂肪酸(TFA)含量呈下降趋势,山梨酸钾组含量先下降然后趋于稳定;第2—4天疏果多酚组的TFA含量高于其余3组,第4—8天疏果多酚组与表儿茶素组的TFA含量高于其他两组。4组山羊肉的TBARS值在贮藏期内先减小后增加,第3天后其值排序为:疏果多酚组<表儿茶素组<空白组<山梨酸钾组;在冷藏结束时,疏果多酚的TBARS值分别为表儿茶素、山梨酸钾及空白组的90.84%、56.83%和59.45%。随着时间延长,山羊肉TVB-N值逐渐增加同时pH先上升然后趋于稳定,与表儿茶素、山梨酸钾及空白组相比,疏果多酚组的山羊肉冷藏时间分别延长了0.48、1.13和1.61 d。【结论】猕猴桃疏果多酚能延缓山羊肉冷藏时pH的上升,维持内聚性和回复性稳定,同时抑制冷藏山羊肉中的脂类氧化分解,减缓PUFA氧化,从而延长保质期并改善山羊肉的品质。
关键词:山羊肉;猕猴桃;多酚;冷藏;品质;氧化
0 引言
【研究意义】随着人们生活水平的提高,冷鲜肉成为肉品消费的主流[1]。化学添加剂自身潜在的毒副作用和残留,对肉类品质、人体健康和环境污染造成了影响[2-3]。因此,为了提高冷鲜肉的品质和安全性,国内外科技工作者都在积极寻求有效的天然添加剂[4-5]。研究表明,一些天然抗氧化剂对脂质和蛋白质氧化具有一定的抑制作用[6-8];除了减缓氧化作用,天然抗氧化剂也可以改善肉品理化性质和感官特性[9-10]。中国是世界猕猴桃生产大国,每年因春季的“疏花疏果”处理有大量的疏果被丢弃在果园中,不仅造成资源极大浪费,还会成为一些病原菌的寄主,加速果树病虫害的传播[11]。因此,将猕猴桃疏果用于改善肉品质的研究,可以变废为宝。【前人研究进展】猕猴桃中活性成分研究已有大量报道,猕猴桃疏果与成熟的猕猴桃相比,两者之间的酚类组成相同,但疏果的总酚含量显著更高[12];Iwasawa等[13]研究结果表明,与橙子和葡萄柚相比,猕猴桃具有更强的抗氧化作用,尤其是对脂质氧化早期的抑制作用;LEONTOWICZ等[14]研究猕猴桃中有机物含有更多的生物活性物质(主要是多酚),其抗氧化能力较强;JIAO等[15]研究了不同品种猕猴桃的酚类组成和抗氧化特性,结果表明表儿茶素是猕猴桃中重要的抗氧化成分贡献者;RYSMAN等[16]研究结果表明,表儿茶素可以抑制肌原纤维蛋白氧化,以改善肉的品质。此外,山梨酸钾作为常用的肉品添加剂,在冷藏条件下其能延长肉保质期,提高肉的食用品质和安全性[17]。【本研究切入点】关于猕猴桃及其活性成分利用、山梨酸钾在肉品中应用的研究较多,然而缺少对它们改善肉类品质方面的研究,尤其是猕猴桃疏果中多酚的应用报道更为少见。【拟解决的关键问题】本研究以陕北白绒山羊的背最长肌作为试验材料,探索疏果多酚在改善山羊肉理化品质、延缓脂肪和蛋白质氧化等方面的调控作用,从而实现将猕猴桃疏果综合应用于肉品产业中。
1 材料与方法
试验于2018年5月至2019年4月在陕西师范大学食品工程与营养科学学院进行。
1.1 材料与主要试剂
试验材料:陕北白绒山羊的背最长肌购于西安市朱雀市场。猕猴桃疏果多酚:疏果品种“海沃德”,采样于陕西佰瑞猕猴桃研究院有限公司。参考JIAO等[15]处理方式,经过冷冻干燥制成冻干粉,再经X-5大孔树脂纯化冻干,最后用HPLC进行定性定量分析,其主要成分为表儿茶素(139.45±3.54)mg∙g-1、槲皮素(36.03±1.23)mg∙g-1、儿茶素(5.84±0.24)mg∙g-1。
试验所用试剂:无水乙醇、硼酸、氧化镁、无水硫酸铜、硫酸钾、石英砂、石油醚、氯仿、甲醇、正己烷,均为分析纯,科密欧公司;山梨酸钾,天津市福晨化学试剂厂;表儿茶素(纯度≥98%),安徽酷尔生物工程有限公司。
1.2 仪器与设备
试验所用主要仪器设备:TA.XT.Plus质构仪,英国stable micro system公司;NS800分光测色仪,深圳市三恩驰科技有限公司;ME21数码生物显微镜,奥林巴斯公司;2010 ultra气相色谱-质谱联用仪,日本岛津公司。
1.3 样品处理
对购买的3只山羊胴体的背最长肌(每块背最长肌约2 kg),剔除脂肪组织、筋膜,进行等厚(1.5 cm左右)切分。把每块山羊胴体的背最长肌作为单个样本,分为空白组、疏果多酚组、表儿茶素组和山梨酸钾组4组,每组8份,共32份(每份肉50±0.2 g,50×32=1 600 g)。分别以猕猴桃疏果多酚、表儿茶素、山梨酸钾为溶质,均用蒸馏水为溶剂配制1 mg∙mL-1的溶液。疏果多酚组、表儿茶素组及山梨酸钾组均以3.5 mL溶液对每份山羊肉进行喷淋处理,空白组以等量蒸馏水喷淋山羊肉,自封袋包装后放置于4℃冰箱中冷藏[18]。处理当天开始,每天取样一次,连取8 d样,得到待测样品。
1.4 显微结构测定
按照周楠[19]的方法,每个处理选择3个样品,将肉样用4%多聚甲醛进行过夜固定,然后包埋、切片、HE染色等处理,采用光学显微镜进行观察。
1.5 物性(texture profile analysis,TPA)指标测定
参照刘永峰等[20]的方法,将肉样品剪成1.5 cm×1.5 cm×0.5 cm的肉块,采用质构仪参数设置:P36R探头;测前、测中、测后速度均为1.0 mm∙s-1;测试时间间隔5 s;触发力5 g;数据采集速率400 PPs;应变量均为75%,测定硬度、弹性、内聚性、咀嚼性和回复性5个TPA指标。
1.6 pH测定
按照GB/T 9695.5—2008,取4.0 g肉样加入40 mL 0.1 mol∙L-1的KCl溶液于烧杯中,玻璃棒搅拌,常温下放置30 min,使用pH计测值。
1.7 脂肪酸含量测定
取肉样3.0 g加入氯仿甲醇溶液(2﹕1,v/v)放置3—4 h,40℃水浴浸提,加入饱和NaCl溶液,静置后取下层溶液,按照GB 5009.168—2016进行甲酯化,再将溶液溶于正己烷中密封保存。将提取的样品和标准品使用气相色谱-质谱联用仪在相同条件下进行检测,根据保留时间和结构相似度进行定性,再进行定量分析。GC-MS检测条件参照张婷[21]的方法。鉴定出的脂肪酸含量(平均值)结果用热图表示,单位为g∙kg-1。
1.8 硫代巴比妥酸反应物值(thiobarbituric acid reactive substances,TBARS)测定
参考刘占东等[22]的方法,并适当修改,采用双波长532 nm和600 nm比色法测定,结果用每千克肉中丙二醛的毫克数表示。
TBARS (mg∙kg-1)=
(A532-A600)/155×(1/10)×72.6×1000
式中,A532:532 nm处所测的紫外吸光光度值;A600:600 nm处所测的紫外吸光光度值。
1.9 挥发性盐基氮(Total volatile base nitrogen,TVB- N)测定
参照GB 5009.228—2016,用半微量定氮法进行测定。
1.10 数据处理
采用Excel 2013软件对数据进行处理及分析。采用SPSS 22.0中的ANOVA进行方差分析,Duncan’s多重检验进行差异显著性分析。通过OriginPro 2015软件进行聚类及基于双标图的相似性分析,聚类方法为类平均法。
2 结果
2.1 冷藏期间山羊肉肌纤维显微结构的变化
冷藏期间山羊肉肌纤维显微结构变化如图1所示,随着冷藏时间延长,4种山羊肉的显微结构变得不紧致,排列变得疏松,形状变得离散。在第2天时,4组肌纤维结构差异不大,其结构完整、轮廓清晰,排列致密有序、形状规则。在第5天时,疏果多酚与表儿茶素组的肌纤维结构排列疏松,结构松弛;山梨酸钾组的肌纤维正常排列被破坏,细胞间距逐渐增大;空白组肌纤维结构完整性丧失严重,致密结构被严重破坏。在第8天时,空白和山梨酸钾组的肌纤维结构完整性完全丧失,致密结构被几乎全部破坏,而疏果多酚与表儿茶素组的肌纤维结构相对完整。可见,疏果多酚与表儿茶素处理有利于维持山羊肉肌纤维结构的完整性,且猕猴桃疏果多酚效果好于表儿茶素。
2.2 冷藏期间山羊肉物性变化
山羊肉冷藏期间物性的变化如图2所示。随着山羊肉冷藏时间延长,4组山羊肉的硬度均呈降低趋势,在前3 d的硬度值排序为:山梨酸钾组>表儿茶素组>空白组>疏果多酚组,其中,山梨酸钾组显著高于其他3组(P<0.05);第5天后各组硬度值变得相近;冷藏结束时,与初始值相比,疏果多酚组、表儿茶素组、山梨酸钾组及空白组的硬度分别降低了50.52%、41.73%、39.63%和51.56%。4组的弹性均呈现先降低后稳定的趋势,在前3 d疏果多酚组的弹性值均低于其余3组;冷藏结束时,与初始值相比,疏果多酚组、表儿茶素组、山梨酸钾组及空白组的弹性值分别降低了45.23%、33.34%、44.64%和41.31%,表儿茶素组显著高于其他3组(P<0.05)。疏果多酚组与山梨酸钾组的内聚性较为稳定,表儿茶素组的内聚性在第1天出现峰值,空白组在第3天和第7天出现峰值;冷藏结束时,山梨酸钾组与疏果多酚组和空白组差异显著(P<0.05)。4组处理的咀嚼性均呈现降低趋势,其值在0—4 d差异较大,第5天后的变化趋势趋于一致,且在冷藏结束时,疏果多酚组、表儿茶素组、山梨酸钾组及空白组的咀嚼性分别较初始值降低72.06%、61.46%、62.00%和67.37%。疏果多酚组的回复性较为稳定,表儿茶素组和山梨酸钾组的回复性分别在第1天和第5天有峰值,空白组在第3天和第7天出现峰值。综上可见,疏果多酚处理的山羊肉硬度下降且内聚性和回复性较稳定,表儿茶素处理的山羊肉弹性增强,山梨酸钾处理的山羊肉硬度增强且内聚性稳定。
width=384,height=288
图1 冷藏期间山羊肉肌纤维显微结构的变化(×400倍)
Fig. 1 Microstructure changes of goat meat during cold storage (×400 times)
width=478,height=523.5
不同小写字母表示同一时间处理间差异显著(P<0.05)。下同
Different lowercase letters indicate significant difference at the same time (P<0.05). The same as below
图2 冷藏期间山羊肉物性的变化
Fig. 2 Texture changes of goat meat during cold storage
2.3 冷藏期间山羊肉pH的变化
山羊肉冷藏期间pH变化如图3所示,随着冷藏时间的延长,4组处理山羊肉pH先上升后趋于稳定。疏果多酚组在冷藏第0—6天pH总体呈升高趋势,冷藏第6天时达到最高值(5.89),且疏果多酚组的pH分别是表儿茶素、山梨酸钾及空白组的1.01、1.02和1.01倍;冷藏第6—8天时pH逐渐降低,在冷藏结束时,疏果多酚的pH分别为表儿茶素、山梨酸钾及空白组的98.25%、96.39%和96.72%。其中,在第3天和第8天,疏果多酚组的pH均显著低于山梨酸钾和空白组(P<0.05)。可见,山羊肉的pH随冷藏时间延长整体增高,而猕猴桃疏果多酚处理的山羊肉pH相对最低。
width=223,height=160
图3 冷藏期间山羊肉pH的变化
Fig. 3 Changes in pH value of goat meat during cold storage
2.4 冷藏期间山羊肉脂肪酸变化
4种处理条件下山羊肉的脂肪酸含量如图4所示。其中,山羊肉中C14:0、C16:1 cis-9、C18:1 cis-9、C18:2 cis-9,12含量较高,C15:0、C16:0、C18:1 trans-9、C20:3 cis-8,11,14含量较低,而C17:0和C16:1 cis-9随贮藏时间延长含量相对稳定。猕猴桃疏果多酚对C18:2 cis-9,12的效果明显,表儿茶素对C20:4 cis-5,8,11,14的效果明显,山梨酸钾对C18:1 cis-9的效果较差。随贮藏时间延长,饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、多不饱和脂肪酸(PUFA)含量呈下降趋势,SFA的下降速率最快。整体而言,疏果多酚组与表儿茶素组的脂肪酸随贮藏时间降解较慢,而空白组脂肪酸随贮藏时间降解较快,说明猕猴桃疏果和表儿茶素均能减缓脂肪酸降解。此外,随冷藏时间的延长,疏果多酚组的山羊肉PUFA含量较为稳定,表儿茶素与山梨酸钾组的PUFA含量在第6天有峰值,空白组的含量呈下降趋势;在山羊肉冷藏4 d后,PUFA含量排序为疏果多酚组>表儿茶素组>山梨酸钾组>空白组;冷藏结束时,疏果多酚组的PUFA含量分别为表儿茶素、山梨酸钾及空白组的1.11、1.40和1.86倍。随山羊肉冷藏时间的延长,疏果多酚组MUFA含量先上升后降低且在第4天达到最高值,其含量分别是表儿茶素、山梨酸钾及空白组的1.10、1.40和1.20倍,其余3组的MUFA含量呈下降趋势;在山羊肉冷藏第4、8天时,疏果多酚组与表儿茶素组的MUFA含量高于空白组;冷藏结束时,疏果多酚组的MUFA含量分别为表儿茶素、山梨酸钾及空白组的1.10、1.17和1.21倍。随冷藏时间延长,疏果多酚、表儿茶素和空白组的SFA含量呈下降趋势,山梨酸钾组含量先下降后趋于稳定;空白组的SFA含量低于其他3组,说明疏果多酚、表儿茶素及山梨酸钾均有一定效果。随冷藏时间的延长,疏果多酚、表儿茶素和空白组的山羊肉总脂肪酸(TFA)含量呈下降趋势,山梨酸钾组含量先下降后趋于稳定;在冷藏过程中,第2—4天疏果多酚组的TFA含量高于其余3组,第4—8天疏果多酚组与表儿茶素组的TFA含量高于其他2组,说明猕猴桃疏果多酚能较有效抑制TFA的降解。
4组样品在冷藏条件下用12个脂肪酸指标含量作为聚类变量。聚类结果如图5所示,样品可分成4类:冷藏当天肉样和冷藏第2、4天的疏果多酚组为第1类,脂肪酸营养品质最高,说明相比其余3组处理,疏果多酚的酚类物质丰富,对山羊肉的效果更好;且相比第4天的疏果多酚组,第2天疏果多酚组与第0天肉样更接近,说明随贮藏时间延长,山羊肉的脂肪酸品质下降;冷藏第2天的表儿茶素、山梨酸钾与空白组,第4天的表儿茶素与空白组,第6和第8天的表儿茶素组为第2类,品质相对较好,说明表儿茶素可以有效延缓山羊肉脂肪酸品质变差;冷藏第6天和第8天的疏果多酚组为第3类,品质一般;冷藏第4天的山梨酸钾组,以及第6和第8天的山梨酸钾与第6天和第8天的空白组为第4类,品质相对较差,说明空白与山梨酸钾组的脂肪酸品质下降严重,且与疏果多酚和表儿茶素两组相比,山梨酸钾处理对山羊肉的效果较差。该聚类结果与之前的脂肪酸含量分析结果相似。
利用双标图分析各脂肪酸在不同处理山羊肉评价上的相似性,从中心到各个脂肪酸做一条线段,两脂肪酸线段之间的夹角的余弦值是它们的相关系数,夹角小于90度表示正相关,线段的长度是脂肪酸对不同处理山羊肉的区分能力,线段越长,区分能力越强。相关性结果如图6所示,脂肪酸C15:0、C17:0、C17:1 cis-10夹角较小,存在正相关;C14:0、C20:4 cis-5,8,11,14、C20:3 cis-8,11,14夹角较小,存在正相关;C16:1 cis-9、C18:1 cis-9夹角较小,存在正相关。C18:1 cis-9、C14:0和C18:1 trans-9比其他脂肪酸有较强的区分能力。双标图中点之间的距离,反映它们对应的样本之间的差异大小,两点相距较远,对应样本差异大;两点相距较近,对应样本差异小,存在相似性。在山羊肉冷藏过程中,疏果多酚组与其余3组差异较大,说明疏果多酚对脂肪酸作用效果明显;空白组不同时间的差异较大,说明冷藏时间对山羊肉脂肪酸有较大影响。
综上可见,疏果多酚能有效抑制TFA降解,并且有利于维持SFA、PUFA含量稳定;冷藏时间对其脂肪酸有较大影响,猕猴桃疏果多酚处理山羊肉的效果最优,其次为表儿茶素,最后为山梨酸钾。
width=432.5,height=362.5
图4 山羊肉脂肪酸含量的热图
Fig. 4 Heat map analysis of fatty acid content in goat meat
2.5 冷藏期间山羊肉TBARS值的变化
山羊肉冷藏期间TBARS值变化如图7所示。4组山羊肉的TBARS值随着冷藏时间的延长均先减小后增加,且在第3天后,其值排序为疏果多酚组<表儿茶素组<空白组<山梨酸钾组,其中,疏果多酚组显著低于其余3组(P<0.05);冷藏结束时,疏果多酚组的TBARS值分别为表儿茶素、山梨酸钾及空白组的90.84%、56.83%和59.45%。4组山羊肉在冷藏前2 d的TBARS值均下降,表明在第一个储存阶段脂肪氧化水平较低;冷藏第3天后,空白组的TBARS值逐渐增加;冷藏结束时,与空白组相比,疏果多酚以及表儿茶素处理的TBARS值均显著低于空白组,说明酚类物可抑制脂肪氧化。TBARS值范围在0.20—0.66 mg∙kg-1为鲜肉[23],结合本研究结果,用山梨酸钾和蒸馏水处理的山羊肉在储存第8天后TBARS值分别为0.70和0.67 mg∙kg-1,说明山羊肉已腐败变质,而用疏果多酚处理的山羊肉显示出与用表儿茶素处理一样的新鲜度。可见,在山羊肉中添加疏果多酚可以极大地抑制脂肪氧化,即使在低浓度下也能保持肉的品质。
width=270,height=280
图5 冷藏期间山羊肉脂肪酸含量的聚类分析
Fig. 5 Cluster analysis in fatty acid content of goat meat during cold storage
width=354.5,height=275.5
图6 基于双标图的山羊肉脂肪酸相似性分析
Fig. 6 Fatty acid similarity analysis of goat meat based on biplot
2.6 冷藏期间山羊肉TVB-N值的变化
山羊肉冷藏期间TVB-N值变化如图8所示,4组山羊肉的TVB-N含量随着冷藏时间延长而增加,其值排序为疏果多酚组<表儿茶素组<山梨酸钾组<空白组。冷藏结束时,疏果多酚组的TVB-N值分别为表儿茶素、山梨酸钾及空白组的99.61%、94.54%和71.62%,3组处理显著低于空白组(P<0.05)。根据GB 2707—2016《食品安全国家标准鲜(冻)畜、禽产品》规定,鲜肉的TVB-N≤15 mg/100 g,本研究得出疏果多酚、表儿茶素、山梨酸钾和空白组的山羊肉分别在冷藏第2.28、1.80、1.15和0.67天后超过标准值,即TVB-N值达到标准值时,疏果多酚组的山羊肉冷藏时间分别比表儿茶素、山梨酸钾及空白组延长了0.48、1.13和1.61 d。
width=221.5,height=163.5
图7 冷藏期间山羊肉TBARS值的变化
Fig. 7 Changes in TBARS value of goat meat during cold storage
width=218,height=149
图8 冷藏期间山羊肉TVB-N值的变化
Fig. 8 Changes in TVB-N value of goat meat during cold storage
3 讨论
肌纤维形态作为评价肉品质的指标之一,直径变小,其品质变化好[24]。与蒸馏水处理相比,疏果多酚组的山羊肉肌纤维结构更完整、致密和规则,可能是由于猕猴桃疏果多酚能影响肉中肌纤维蛋白的聚集模式,有利于其肌纤维结构稳定[25]。物性指标可以客观反映食物品质,与感官性状间有显著的相关关系,可以代替感官评定且更客观和准确[26]。山羊肉冷藏过程中,由于组织中胶原分子的结构发生变化,肌原纤维变得脆弱从而导致肌肉硬度减小、弹性下降[27-28];在冷藏过程中,山羊肉的硬度和咀嚼性均有明显变化,对山羊肉硬度与咀嚼性有很大的影响[29],这与本研究结果一致。本研究中山羊肉内聚性值在第0—3天内差异较大,可能是由于在贮存期间水分的流失及蛋白质的变性等因素所致[30]。此外,脂肪的氧化水解是肉类贮藏过程中的常见现象,其中游离脂肪酸从三酰基甘油中释放出来,导致脂肪酸水平升高[31]。同时,肉中脂肪氧化产生的自由基和过氧化物会促进蛋白质的氧化[32-33],产生二次氧化产物,如醛、酮和异呋喃等,它们会对蛋白质结构造成负面影响进而降低肉品质[34-35]。本研究主要对山羊肉脂肪的氧化产物(脂肪酸)进行了分析,其产生的活性自由基可进一步诱导蛋白质与脂质之间的自由基反应,从而形成蛋白质-脂质和蛋白质-蛋白质交联网络[36];从果实中提取的多酚可以通过抑制由氧化和微生物引起的肌原纤维降解来稳定蛋白质交联网络,以稳定山羊肉的物性变化[9,37];因此,疏果多酚维持山羊肉内聚性稳定及降低回复性的原因可能与其对脂肪氧化的延缓作用有关。
山羊肉TBARS、TVB-N值与新鲜程度相关,其值变化可影响肉的持水能力、细胞结构、质地和黏度等[33,38]。本研究发现,随着时间延长,山羊肉TBARS值先减小后增加,TVB-N含量逐渐增加,这与王亮等[39]结果一致。本研究采用2-硫代巴比妥酸法评价冷藏肉在贮藏过程中脂肪氧化产物丙二醛的变化,发现疏果多酚组的TBARS值增长缓慢,到第8天时仍然具有一定的新鲜度,说明疏果多酚可以达到较好的延缓脂肪氧化的效果。在冷藏期间,TBARS值减小可能是由于脂肪氧化产物丙二醛与肉中活性氨基作用生成1-氨基-3-氨基丙烯所致;TBARS值增加可能是由于不饱和脂肪酸在氧的作用下发生氧化生成的醛和酮所致[40],这与本试验PUFA含量下降的结果一致。同时,饮食中高水平的PUFA经常与血液胆固醇水平降低以及人群心血管疾病发病率降低有关[41]。另一方面,山梨酸钾能抑制肉表面的细菌滋生并减缓脂肪酸降解[42]。因此,表儿茶素组与疏果多酚组的脂肪酸随贮藏时间延长而降解较慢,特别是对PUFA效果较为一致可归因于他们延缓氧化的作用。山羊肉pH、TVB-N值随冷藏时间延长而逐渐增加,可能是由于山羊肉在自身酶和微生物的作用下,蛋白质及其他含氮物质被分解所致[43-44];本研究中疏果多酚组的山羊肉冷藏第3天时,其TVB-N含量为18.43 mg/100 g,略高于鲜肉国家标准,这一结果与王振华等[45]研究结果一致;山梨酸钾组在山羊肉冷藏第1天时,其TVB-N含量为13.88 mg/100 g,达到鲜肉标准,这一结果与王佳奕等[46]研究一致。山梨酸钾组中TVB-N值较低可能是其抑制微生物菌群造成的,而疏果多酚与表儿茶素效果更好可能是由于他们抗菌和延缓氧化综合作用的结果[38]。
4 结论
猕猴桃疏果中的多酚能维持山羊肉内聚性和回复性稳定,且降低山羊肉的硬度;同时能抑制冷藏山羊肉中脂肪的氧化分解,减缓PUFA氧化。因此,猕猴桃疏果多酚能改善山羊肉的品质,延缓氧化,是猕猴桃疏果资源综合利用的有益尝试。
References
[1] 李欢欢. 绵马贯众对冷鲜肉保鲜活性研究[D]. 杨凌: 西北农林科技大学, 2018.
Li H H. Study on the preservation activity of Dryopteris crassirhizoma on chilled fresh meat [D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[2] HARTANTI D, HAQQI M Z, HAMAD A. Potency of combination of essential oils of ginger and lemongrass as fresh chicken meat natural preservative. Advanced Science Letters, 2018, 24(1): 91-94.
[3] 刘永峰, 申倩. 畜、禽肉影响人类健康的异同性分析. 陕西师范大学学报(自然科学版), 2020, 48(1): 114-122.
LIU Y F, SHEN Q. Analysis of similarities and differences between animal and poultry affecting human health. Journal of Shaanxi Normal University (Natural Science Edition), 2020, 48(1): 114-122. (in Chinese)
[4] 王盼, 何贝贝, 李志成, 田娜娜, 马林林. 生物保鲜剂对冷却肉保鲜的影响. 中国食品学报, 2019, 19(11): 199-207.
WANG P, HE B B, LI Z C, TIAN N N, MA L L. Effect of biological preservative on preservation of chilled pork. Journal of Chinese Institute of Food Science and Technology, 2019, 19(11): 199-207. (in Chinese)
[5] 孙卫青, 马俪珍, 南庆贤. 天然保鲜液对冷却猪肉保鲜效果的研究. 中国农业科学, 2007, 40(8): 1835-1842.
SUN W Q, MA L Z, NAN Q X. Fresh-keeping effect of natural preservatives on chilled pork. Scientia Agricultura Sinica, 2007, 40(8): 1835-1842. (in Chinese)
[6] GARCIA-LOMILLO J, GONZALEZ-SANJOSE M L, PINO- GARCíA R D, ORTEGA-HERAS H M, MUNIZ-RODRíGUEZ P. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties. LWT-Food Science and Technology, 2017, 77: 85-91.
[7] BREWER M S. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(4), 221-247.
[8] TANG S, KERRY J P, SHEEHAN D, BUCKLEY D J, MORRISSEY P A. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Research International, 2001, 34(8): 651-657.
[9] SUN L J, SUN J J, THAVARAJ P, YANG X B, GUO Y R. Effects of thinned young apple polyphenols on the quality of grass carp (Ctenopharyngodon idellus) surimi during cold storage. Food Chemistry, 2017, 224: 372-381.
[10] ZAMUZ S, LóPEZ-PEDROUSO M, BARBA F J, LORENZO J M, DOMINGUEZ H, FRANCO D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Research International, 2018, 112: 263-273.
[11] 赵佐平. 陕西苹果、猕猴桃果园施肥技术研究[D]. 杨凌: 西北农林科技大学, 2014.
ZHAO Z P. The fertilizer application technology in apple and kiwifruit orchards in Shaanxi province [D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[12] JIAO Y, CHEN D L, FAN M T, QUEK S Y. UPLC-QqQ- MS/MS-based phenolic quantification and antioxidant activity assessment for thinned young kiwifruits. Food Chemistry, 2019, 281: 97-105.
[13] IWASAWA H, MORITA E, YUI S, YAMAZAKI M. Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biological and Pharmaceutical Bulletin, 2011, 34(1): 128-134.
[14] LEONTOWICZ M, JESION I, LEONTOWICZ H, PRAK Y S, NAMIESNIK, J, JASTRZEBSKI Z, KATRICH E, TASHMA Z, GORINSTEIN S. Bioactivity and bioavailability of minerals in rats loaded with cholesterol and kiwi fruit. Microchemical Journal, 2014, 114: 148-154.
[15] JIAO Y, KILMARTIN P A, FAN M T, QUEK S Y. Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 2018, 268: 77-85.
[16] RYSMAN T, UTRERA M, MORCUENDE D, VAN ROYEN G, VAN WEYENBERG S, DE SMET S, ESTéVEZ M. Apple phenolics as inhibitors of the carbonylation pathway during in vitro metal- catalyzed oxidation of myofibrillar proteins. Food Chemistry, 2016, 211: 784-790.
[17] 邓思瑶, 杨文鸽, 周星宇, 徐大伦, 楼乔明. 包装方式和山梨酸钾处理对冷藏鲐鱼品质的影响. 核农学报, 2015, 29(3): 506-512.
DENG S Y, YANG W G, ZHOU X Y, XU D L, LOU Q M. Effects of packing mode and potassium sorbate on the quality ofpneumatophorus japonicus during refrigeration. Journal of Nuclear Agricultural Sciences, 2015, 29(3): 506-512. (in Chinese)
[18] 魏里朋, 何承云, 康壮丽, 鲁飞, 马汉军, 王正荣, 赵圣明, 朱明明.温度波动对冷却猪肉品质的影响. 食品工业科技, 2019, 40(16): 218-222.
WEI L P, HE C Y, KANG Z L, LU F, MA H J, WANG Z R, ZHAO S M, ZHU M M. Effect of temperature fluctuation on the quality of chilled pork. Science and Technology of Food Industry, 2019, 40(16): 218-222. (in Chinese)
[19] 周楠. 育肥渤海公驴肌肉组织学特性以及理化性状的研究[D]. 保定: 河北农业大学, 2014.
ZHOU N. Study on the histological and physicochemical characteristics of muscle in fattening Bohai Male Donkey [D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[20] 刘永峰, 赵璐, 王娟, 付熙哲, 钟华珍. 牛肉蒸制工艺及其质构、营养品质评价. 陕西师范大学学报(自然科学版), 2017, 45(5): 107-116.
LIU Y F, ZHAO L, WANG J, FU X Z, ZHONG H Z. Study of steamed beef processing and evaluation on their texture characteristics and nutritional quality. Journal of Shaanxi Normal University (Natural Science Edition), 2017, 45(5): 107-116. (in Chinese)
[21] 张婷. 不同贮藏温度下牛肉新鲜度及品质变化研究[D]. 西安: 陕西师范大学, 2016.
ZHANG T. Study on the freshness and quality of beef under different storage temperatures [D]. Xi'an: Shaanxi Normal University, 2016. (in Chinese)
[22] 刘占东, 李璐, 全国芬, 丁武. 肉桂精油壳聚糖纳米粒在冷却肉保藏中的应用. 西北农林科技大学学报(自然科学版), 2016, 44(5): 193-199.
LIU Z D, LI L, QUAN G F, DING W. Application of cinnamon essential oil loaded chitosan nanoparticles in chilled meat preservation. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(5): 193-199. (in Chinese)
[23] HASTY J L, VAN HEUGTEN E, SEE M T, LARICK D K. Effect of vitamin E on improving fresh pork quality in Berkshire-and Hampshire- sired pigs. Journal of Animal Science, 2002, 80(12): 3230-3237.
[24] CHEN T H, ZHU Y P, HAN M Y, WANG P, WEI R, XU X L, ZHOU G H. Classification of chicken muscle with different freeze–thaw cycles using impedance and physicochemical properties. Journal of Food Engineering, 2017, 196: 94-100.
[25] NIETO G, MARTINEZ L, CASTILLO J, ROS G. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages. Journal of the Science of Food and Agriculture, 2017, 97(11): 3761-3771.
[26] 张婷, 吴燕燕, 李来好, 王雅楠, 任中阳. 咸鱼品质的质构与感官相关性分析. 水产学报, 2013, 37(2): 303-310.
ZHANG T, WU Y Y, LI L H, WANG Y N, REN Z Y. Correlation analysis of sensory with instrumental texture measurement of salted fish. Journal of Fisheries of China, 2013, 37(2): 303-310. (in Chinese)
[27] STEEN D, CLAEYS E, UYTTERHAEGEN L, SMET S D, DEMEYER D. Early post-mortem conditions and the calpain/ calpastatin system in relation to tendemess of double-muscled beef. Meat Science, 1997, 45(3): 307-319.
[28] TAYLOR R G, FJAERA S O, SKJERVOLD P O. Salmon fillet texture is determined by myofiber-myofiber and myofiber-myocommata attachment. Journal of Food Science, 2002, 67(6): 2067-2071.
[29] SUBBAIAH K, MAJUMDAR R K, CHOUDHURY J, MOCHERLA B P, DHAR B, ROY D, SAHA A, MAURYA P. Protein degradation and instrumental textural changes in fresh Nile tilapia (Oreochromis niloticus) during frozen storage. Journal of Food Processing and Preservation, 2015, 39(6): 2206-2214.
[30] 李苗云, 郝红涛, 赵改名, 柳艳霞, 黄现青, 张秋会, 孙灵霞. 高温火腿肠在贮藏过程中质构稳定性研究. 食品科学, 2010, 31(22): 473-476.
LI M Y, HAO H T, ZHAO G M, LIU Y X, HUANG X Q, ZHANG Q H, SUN L X. Texture stability of high-temperature ham sausage during storage. Food Science, 2010, 31(22): 473-476. (in Chinese)
[31] ALFAIA C M M, ALVES S P, LOPES A F, FERNANDES M J E, COSTA A S, FONTES C M G A, CASTRO M L F, BESSA R J B, PRATES J A M. Effect of cooking methods on fatty acids, conjugated isomers of linoleic acid and nutritional quality of beef intramuscular fat. Meat Science, 2010, 84(4): 769-777.
[32] GUYON C, MEYNIER A, LAMBALLERIE M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science and Technology, 2016, 50: 131-143.
[33] STAPORNKUL N, PRYTKOVA T, WERE L. Effect of green tea on interaction of lipid oxidation products with sarcoplasmic and myofibrillar protein homogenates extracted from bovine top round muscle. Food Research International, 2016, 89: 1038-1045.
[34] SOLADOYE O P, JUáREZ M L, ALHUS J L, SHAND P J, ESTéVEZ M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(2): 106-122.
[35] LUND M N, HEINONEN M, BARON C P, ESTéVEZ M. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research, 2011, 55: 83-95.
[36] TURGUT S S, ISIKCI F, SOYER A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Science, 2017, 129: 111-119.
[37] REUVEN R, DO P M, Friedman M. Inhibition of biological activity of staphylococcal enterotoxin A (SEA) by apple juice and apple polyphenols. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5421-5426.
[38] KHAN M I, JO C, TARIQ M R. Meat flavor precursors and factors influencing flavor precursors-A systematic review. Meat Science, 2015, 110: 278-284.
[39] 王亮, 曾名湧, 董士远, 刘尊英, 杨会成. 海带多酚制备及其对南美白对虾保鲜效果的研究. 食品工业科技, 2009, 30(10): 187-191.
WANG L, ZENG M Y, DONG S Y, LIU Z Y, YANG H C. Study on the preparation of kelp polyphenols and the effect of kelp polyphenols on the fresh-keeping of Peneaus vannamei. Science and Technology of Food Industry, 2009, 30(10): 187-191. (in Chinese)
[40] WOOD J D, RICHARDSON R I, NUTE G R, FISHER A V, CAMPO M M, KASAPIDOU E, SHEARD P R, ENSER M. Effects of fatty acids on meat quality: A review. Meat Science, 2004, 66(1): 21-32.
[41] BJORKLUND E A, HEINS B J, DICOSTANZO A, CHESTER- JONES H. Fatty acid profiles, meat quality, and sensory attributes of organic versus conventional dairy beef steers. Journal of Dairy Science, 2014, 97(3): 1828-1834.
[42] 洪伟. 山梨酸钾抑制食源性致病菌的活性研究[D]. 长春: 吉林大学, 2016.
HONG W. Study on foodborne pathogens activity of potassium sorbate [D]. Changchun: Jilin University, 2016. (in Chinese)
[43] 蒋宇飞, 芮汉明. 白切鸡微波杀菌后在冷藏过程中的品质变化. 食品工业科技, 2008(4): 258-261.
JIANG Y F, RUI H M. Quality variety of Baiqie chicken sterilized by microwave during cold storage. Science and Technology of Food Industry, 2008(4): 258-261. (in Chinese)
[44] 秦菊. 伊犁地区马肉品质与理化性状的分析研究[D]. 乌鲁木齐: 新疆农业大学, 2014.
QIN J. Analysis and study on the quality and physicochemical properties of horse meat in Ili area [D]. Urumqi: Xinjiang Agricultural University, 2014. (in Chinese)
[45] 王振华, 侯诗夏, 李兴艳, 夏杨毅, 尚永彪, 李洪军, 彭增起. 兔肉宰后成熟过程中理化性质的变化. 食品科学, 2015, 36(3): 80-85.
WANG Z H, HOU S X, LI X Y, XIA Y Y, SHANG Y B, LI H J, PENG Z Q. Physical and chemical properties of rabbit meat during postmortem aging. Food Science, 2015, 36(3): 80-85. (in Chinese)
[46] 王佳奕, 王綪, 丁武. 山梨酸纳米微粒在冷却猪肉保鲜中的应用. 食品科学, 2018, 39(9): 202-206.
WANG J W, WANG W, DING W. Application of sorbic acid nanoparticles in improving the quality and shelf-life of chilled pork. Food Science, 2018, 39(9): 202-206. (in Chinese)
Improving Quality and Delaying Oxidation in Goat Meat Refrigeration by Polyphenols from Thinned Young Kiwifruit
GU MingHui, LIU YongFeng, SHEN Qian, QIAO ChunYan
(College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062)
Abstract:【Objective】The objective of this study was to research the function of thinned young kiwifruit discarded in “Blossom and Fruit Thinning” in goat meat cold storage and to provide useful information for lengthening the shelf life of refrigerated goat meat, maintaining goat meat quality and delaying the oxidation of goat meat. 【Method】The goat meat was sprayed with 1 mg·mL-1 polyphenols from thinned young kiwifruit, epicatechin and potassium sorbate solution, control group was treated with distilled water, then preserved at 4℃ refrigerator in ziplock bags. The microstructure, texture characteristics, pH, fatty acid content, thiobarbituric acid reactive substance assay (TBARS) and volatile base nitrogen (TVB-N) of goat meat were measured during 8 d refrigeration. 【Result】As time went on, the goat meat microstructure of the four groups became tender and muscle fibers were gradually loosened and relaxed. During the cold storage period, the hardness of goat meat in four groups showed a decreasing trend. In the first 3 days, the hardness values were ranked as follows: potassium sorbate group> epicatechin group> blank group> thinned kiwifruit polyphenol group. After 5 days, the hardness values of the groups became similar. At the end of cold storage, the hardness of the thinned kiwifruit polyphenol group, epicatechin group, potassium sorbate group and blank group decreased by 50.52%, 41.73%, 39.63% and 51.56%, respectively. The springing of goat meat in four groups was first increased and then remained stable. In the first 3 days, the springing value of the polyphenols group was lower than that of the other three groups. At the end of cold storage, the springing values of the thinned kiwifruit polyphenol group, epicatechin group, potassium sorbate group and blank group were reduced by 45.23%, 33.34%, 44.64% and 41.31%, respectively; the chewiness of goat meat in four groups showed a downward trend as a whole, and the chewiness of the thinned kiwifruit polyphenol group, epicatechin group, potassium sorbate group and blank group decreased by 72.06%, 61.46%, 62.00% and 67.37%, respectively. The cohesiveness and resilience of the thinned kiwifruit polyphenol group were relatively stable, and the cohesiveness of the potassium sorbate group was in the same trend. With the prolongation of time, the content of polyunsaturated fatty acids (PUFA) in the thinned kiwifruit polyphenol group was remained stable, and the PUFA content of epicatechin and potassium sorbate groups was peaked at 6 d, while the content of blank group showed a downward trend. At the end, the PUFA content of thinned kiwifruit polyphenol group was 1.11, 1.40 and 1.86 times of the epicatechin, potassium sorbate and blank groups, respectively. The content of monounsaturated fatty acid (MUFA) in the thinned kiwifruit polyphenol group was increased first and then decreased. The highest value of MUFA content in the thinned kiwifruit polyphenol group was reached in 4 d, while other groups showed a downward trend. At the end of cold storage, the MUFA content of thinned kiwifruit polyphenol group was 1.10, 1.17 and 1.21 times of the epicatechin, potassium sorbate and blank groups, respectively. The content of the saturated fatty acids (SFA) and total fatty acids (TFA) in the thinned kiwifruit polyphenol, epicatechin and blank groups was decreased, while the content of potassium sorbate group decreased first and then stabilized. The TFA content of thinned kiwifruit polyphenol group was higher than that of the other three groups in 2-4 days. The TFA content of the thinned kiwifruit polyphenol and epicatechin groups was higher than that of the other two groups in 4-8 days. The TBARS values of goat meat in four groups decreased firstly after storage, and after 3 days, their values were ranked as follows: thinned kiwifruit polyphenol group < epicatechin group < blank group < potassium sorbate group. At the end of cold storage, the TBARS values of thinned kiwifruit polyphenol group were 90.84%, 56.83% and 59.45% of the epicatechin, potassium sorbate and blank groups, respectively. With the prolongation of time, the TVB-N value of goat meat gradually increased while the pH increased first and then stabilized. Compared with the epicatechin, potassium sorbate and blank groups, the chilled time of goat meat in the thinned kiwifruit polyphenol group was extended by 0.48, 1.13 and 1.61 d, respectively. 【Conclusion】Thinned young kiwifruit polyphenols could prolong the shelf life of meat and improve meat quality by delaying the rise of goat meat pH, inhibiting lipid oxidation, slowing down PUFA oxidation, and helping maintain cohesiveness and resilience stability.
Key words: goat meat; kiwi fruit thinning; polyphenol; refrigerated storage; quality; oxidation
收稿日期:2019-11-10;
接受日期:2020-02-12
基金项目:国家自然科学基金(U1903109)、陕西省科技计划项目(2015KTTSNY04-07、2020NY-187)、中央高校基本科研业务费专项(GK202001002)
联系方式:古明辉,E-mail:15237470830@163.com。通信作者刘永峰,E-mail:yongfeng200@126.com
开放科学(资源服务)标识码(OSID):width=42.5,height=42.5
(责任编辑 赵伶俐)
|
|