|
不同品种苜蓿中营养成分相互关系及生物产量
李泽民,张晨,张崇玉,张桂国
(山东农业大学动物科技学院/山东省动物生物工程与疾病防治重点实验室,山东泰安 271018)
摘要:【目的】测定不同品种苜蓿营养成分含量与变异程度以及各纤维成分含量之间的相互关系;比较不同品种苜蓿的生物产量。【方法】选用WL343HQ、WL353HQ、WL354HQ、WL363HQ、WL366HQ、阿尔冈金、金皇后、中苜3号、中苜6号、鲁多、鲁黄1号、无棣苜蓿、鲁丰1号、保定苜蓿、中原804、敖汉苜蓿16个品种苜蓿,于2016年10月2日播种,每个品种设2次重复,小区随机排列,每个品种苜蓿种植面积为18 m2(3 m×6 m),行距30 cm,播种10行。2018年5月23日初花期时收割,测定其生物产量;制备32个样品,测定其干物质(DM)中的粗灰分(ASH)、粗蛋白质(CP)、粗脂肪(EE)、粗纤维(CF)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和木质素(ADL)等营养成分的含量。【结果】(1)不同品种苜蓿DM中,ASH、NDF、ADF、半纤维素(HCEL)、纤维素(CEL)和ADL的含量差异极显著(P<0.01),EE的含量差异不显著(P=0.527)。WL363HQ苜蓿的ASH含量最高,为8.53%;金皇后苜蓿的CP含量最高,为27.19%;保定苜蓿的EE和CF含量最高,分别为3.01%、36.69%;中原804苜蓿的NDF、ADF、CEL和ADL含量最高,分别为57.02%、42.73%、34.43%和7.92%;不同品种苜蓿DM中的ASH、CP、EE、CF、NDF、ADF、ADL、CEL和HCEL含量的平均值分别为7.83%、21.58%、2.51%、33.25%、50.12%、36.76%、6.98%、29.43%和13.36%;变异系数(CV)在5.16%—12.06%之间。(2)苜蓿中ADF与NDF、CEL、ADL含量呈强相关,相关系数r分别为0.9756、0.9955、0.9455;CF与ADF、CEL、ADL之间的相关系数r分别为0.9114、0.8849、0.9375;CF(含AIA)与CF之间的相关系数r为0.9997;NDF与CEL、ADL、HCEL之间的相关系数r分别为0.9671、0.9396、0.8736;ADL(含AIA)与ADL之间的相关系数r为0.9989;RFA与ADF、CEL之间的相关系数r分别为0.9826、0.9700。(3)相对饲用价值(RFV)与NDF含量之间呈强相关(r=0.9938),可用于苜蓿RFV的估测:RFV=287.0677-3.4709NDF(%) n=16 P<0.01。(4)不同品种苜蓿生物产量不同,保定苜蓿粗脂肪、碳水化合物、半纤维素和纤维素产量最高,分别为393.59、9 308.22、1 976.32和4 208.05 kg·hm-2;金皇后苜蓿粗蛋白质产量最高,为2 697.23 kg·hm-2,保定苜蓿消化能(DE)产量最高,为126 814.45 MJ·hm-2。【结论】不同品种苜蓿纤维成分含量之间呈强相关,苜蓿RFV值与NDF成分呈强相关;不同品种苜蓿生物产量不同。
关键词:苜蓿;营养成分;生物产量
0 引言
【研究意义】紫花苜蓿作为世界上种植面积最大的多年生优良豆科牧草,具有抗寒抗旱、再生性强、营养价值高、适口性好等优点,苜蓿干草及苜蓿青贮等产品广泛应用在草食动物饲粮中,是畜禽重要的饲草饲料[1]。评定苜蓿干草的营养价值有粗蛋白(CP)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗灰分(ASH)、相对饲用价值(RFV)等指标,中国畜牧业协会颁布了苜蓿干草的团体标准(T/CAAA001-2018[2]),根据以上指标将苜蓿干草质量分为特级、优级、一级、二级、三级5个分级,为生产实际中的应用提供了依据。【前人研究进展】国内外对紫花苜蓿的营养成分和生物产量有一些研究,李冠真[3]研究不同播种量对不同品种苜蓿生产性能和营养价值的影响,依据灰色关联分析和权重决策法综合评价,播种量为30 kg·hm-2时营养价值最高。宋书红等[4]研究了不同刈割时期对紫花苜蓿营养价值和生物产量的研究,发现紫花苜蓿在开花期时的营养价值最高,生物产量最高。裴彩霞等[5]研究不同干燥方法对紫花苜蓿营养成分含量的影响,发现最佳的干燥方法是直接烘干,营养价值最高。Kaula等[6-7]研究表明,紫花苜蓿的形态发育与其生物产量和营养物质的积累密切相关。【本研究切入点】国内外对影响苜蓿干草中各营养成分的含量和生物产量因素的报道有很多,然而,对于同一时间种植、同一时间收获的不同苜蓿品种之间的营养成分含量以及苜蓿各纤维成分含量之间的相互关系,在国内外研究报道中较少。【拟解决的关键问题】本研究选用16个国内外优良苜蓿品种,在同一试验田里种植,初花期收割,测定比较不同苜蓿品种各营养成分的含量和变异程度、生物产量,不同纤维成分之间的相互关系,建立苜蓿营养成分含量、消化能及RFV的估测模型,为其估测提供依据。
1 材料与方法
1.1 试验地概括
试验田选在山东农业大学试验基地,具有典型的鲁中山区气候和土壤特点。鲁中山区以泰山山脉为主,多丘陵,山地气候特征较明显,属温带季风气候。泰安年平均气温为13.4℃,年平均降水量为678.5 mm,全年盛行风向为偏东北[8],土壤肥沃,保水能力强。
1.2 试验材料
选用WL343HQ、WL353HQ、WL354HQ、WL363HQ、WL366HQ、阿尔冈金、金皇后、中苜3号、中苜6号、鲁多、鲁黄1号、无棣苜蓿、鲁丰1号、保定苜蓿、中原804、敖汉苜蓿16个苜蓿品种。
1.3 试验设计
试验于2016年10月2日播种,每个品种设2次重复,小区随机排列,每个品种苜蓿种植面积为18 m2(3 m×6 m),行距30 cm,播种10行,小区间距40 cm,四周设保护行2 m以上。
1.4 样品采集与制备
于2018年5月23日初花期时收割,在每个小区选5个点,每点为1 m2的范围,在此范围内离地面5 cm处割取苜蓿,将各点苜蓿混合均匀,随机取鲜草500 g,3个重复。将新鲜苜蓿制成实验室半干样品或风干样品,按照GB/T 20195-2006[9]标准制备样品,粉碎后过1.00 mm筛,然后将样品充分混合均匀,密封保存以备分析测定。
1.5 测定方法
苜蓿产量的测定,将小区内的苜蓿全部刈割,称其质量m(kg),按照以下公式计算苜蓿每公顷的产量:
苜蓿每公顷的产量(kg/hm2)= m÷18×10000。
式中,18为小区的面积18 m2,10 000为公顷与平方米的换算单位。
营养成分产量的测定,按照以下公式:
营养成分产量(kg·hm-2)=苜蓿每公顷的产量(kg·hm-2)×(1-水分%)×营养成分含量%。
苜蓿样品中水分(W)测定,参照国标法测定(GB/T 6435-20014[10]);ASH含量测定,参照国标法测定(GB/T 6438-2007[11]);CP含量测定,参照国标法测定(GB/T 6432-2018[12]);CF含量测定,参照国标法测定(GB/T 6434-2006/ISO 6865:2000[13]);NDF含量测定,参照国标法测定(GB/T 20806- 2006[14]);ADF含量测定,参照国家行业标准法测定(NY/T 1459-2007[15]);ADL含量测定,参照国标法测定(GB/T 20805-2006[16]);每个饲料样品做3个平行。碳水化合物(CHO)、无氮浸出物(NFE)、半纤维素(HCEL)、CEL、RFV、DE和奶牛能量单位(NND)参照以下公式计算:
CHO%=100%- W%- ASH%- CP%-EE%;
NFE%=100%-W%-ASH%-CP%-EE%-CF%;
HCEL %=NDF %-ADF %;CEL%=ADF %-(ADL+ AIA)%;
RFV=DMI(%BW)×DDM(%DM)/1.29;
式中,干物质采食量DMI(%BW)=120/NDF(%DM);干物质消化率DDM(%DM)=88.9-0.779ADF (%DM)。
DE值用估测模型计算:
DE(MJ·kg-1)=CP×75%×0.0236+EE×50%×0.0393+HCEL×50%×0.0174+CEL×40%×0.0174+ NDSC×85%×0.0174;
NND=(DE×0.5501-0.3958)/3.138;
式中,CP、粗脂肪(EE)、HCEL、CEL和NDSC为饲料中粗蛋白、粗脂肪、半纤维素、纤维素和中性洗涤可溶性碳水化合物的含量(g·kg-1),75%、50%、50%、40%和85%分别为CP、EE、HCEL、CEL和NDSC的牛羊消化率典型值[17-18],0.0236、0.0393和0.0174分别为蛋白质、脂肪和碳水化合物的热价(MJ·g-1)。NDSC计算公式为NDSC%=100%-W%- ASH%-CP%-EE%-NDF%。
1.6 数据统计分析方法
试验数据采用Excel 2010进行整理,采用SPSS 19.0统计软件的比较均值过程进行单因素ANOVA分析,差异显著则用SNK法进行两两比较。P<0.05作为差异显著的判断标准。试验结果用平均值表示。
2 结果
2.1 不同品种苜蓿DM中营养成分含量及DE、NND值
由表1可知,不同品种苜蓿DM中,ASH、NDF、ADF、HCEL、CEL和ADL的含量差异极显著(P<0.01),EE的含量差异不显著(P=0.527)。ASH含量最高的苜蓿品种是WL363HQ,为8.53%;CP含量最高的苜蓿品种是金皇后,为27.19%;EE含量最高的苜蓿品种是保定苜蓿,为3.01%;CF含量最高的苜蓿品种是保定苜蓿,为36.69%;NDF、ADF、CEL和ADL含量最高的苜蓿品种是中原804,分别为57.02%、42.73%、34.43%和7.92%;HCEL含量最高的苜蓿品种是鲁黄1号,为15.43%;DE值最高的苜蓿品种是WL354HQ,为10.95 MJ·kg-1。
2.2 不同品种苜蓿DM中营养成分含量的平均值及变异系数
由表2可知,不同品种苜蓿DM中的ASH、CP、EE、CF、NDF、ADF、ADL、CEL和HCEL含量的平均值分别为7.83%、21.58%、2.51%、33.25%、50.12%、36.76%、6.98%、29.43%和13.36%;变异系数(CV)分别为5.16%、12.06%、10.78%、8.76%、8.78%、9.21%、10.54%、9.15%和9.90%。RFV平均值为113.10%。
表1 不同品种苜蓿样品DM中各种营养成分含量及DE、NND值
Table 1 Contents of various nutrients and DE、NND values in alfalfa DM of different varieties
表2 不同品种苜蓿DM中营养成分含量的平均值及变异系数(%)
Table 2 Average value and coefficient of variation of nutrient content in alfalfa DM of different varieties (%)
2.3 苜蓿中各种成分的关系
由表3可知,CP与NDF、ADF之间的相关系数r分别为0.8996、0.8842;ADF与NDF、CEL、ADL等指标呈强相关,相关系数r分别为0.9756,0.9955,0.9455;CF与ADF、CEL、ADL、NFE之间的相关系数r分别为0.9114、0.8849、0.9375、0.8899;CF(含AIA)与CF之间的相关系数r为0.9997;NDF与CEL、ADL、HCEL、NDSC之间的相关系数r分别为0.9671、0.9396、0.8736、0.9678;ADL(含AIA)与ADL之间的相关系数r为0.9989;RFV与NDF之间的相关系数r为0.9938。
表3 y=a+bx模型中各参数及相关系数r(n=16)
Table 3 Parameters and correlation coefficient r in y=a+bx model (n=16)
2.4 不同品种苜蓿营养成分生物产量及DE、NND值
由表4可知,粗脂肪、碳水化合物、半纤维素和纤维素产量最高的品种是保定苜蓿,分别为393.59、 9 308.22、1 976.32和4 208.05kg·hm-2;粗蛋白质产量最高的品种是金皇后,为2 697.23 kg·hm-2;消化能产量最高的品种是保定苜蓿,为126 814.45 MJ·hm-2。
3 讨论
3.1 影响苜蓿中营养成分含量及生物产量的因素
苜蓿中营养成分含量及生物产量受到多种因素的影响,如苜蓿品种、种植模式、土壤条件、气候条件、田间管理、刈割时期、加工工艺等。
苜蓿中CP含量的高低是反映牧草营养价值的重要指标之一,直接关系到牧草营养价值的高低[19]。宋书红等[4-5,20]对紫花苜蓿在不同时期收获营养成分的变化进行了系统研究,研究结果表明,随着生育期的推迟,紫花苜蓿中CP的含量会下降,CF的含量会增加。ASH中大部分是钙、磷、钾等矿物元素,其反映牧草矿物元素的总体含量[21],但如果在收获时期带入一些泥土,会使ASH含量增加[22]。ADF和NDF是评价苜蓿干物质采食量和消化率的国际通用指标。李岩等[23-24]研究表明,ADF和NDF的含量随着紫花苜蓿生育期的延长呈现上升的趋势,随着灌溉量减少而降低。
国内外对影响苜蓿生物产量的因素有一些研究,Suttie等[25-26]研究报道,苜蓿播种量为22.5—30.0 kg·hm-2时,有利于提高苜蓿的生物产量。宋书红等[4]对不同品种苜蓿在不同时期的生物产量进行了研究,苜蓿在开花期的生物产量最高,高于营养期和盛花期的生物产量。在恶劣的天气条件下,苜蓿主要通过增加根系总长度、根体积和根尖数来适应干旱[27],增加根颈直径和侧根数来提高其抗寒性[28]。田间管理方面,刘贵和等[29]研究表明,在田间配施一定比例的硼、钼和锌可以显著(P<0.05)提高苜蓿生物产量。魏志标等[30-31]研究表明,紫花苜蓿对氮的利用率高于60%,对磷的利用率相对较低,田间最优施氮量为50 kg·hm-2,施磷量141 kg·hm-2,能增加苜蓿的生物产量。施加适量的硒、锌[21],能够提高苜蓿中CP的产量,降低ASH、EE、CF的产量;施加适量的铁、锌[32],能够降低ADF和NDF的产量。在收获加工方面,苜蓿的收获时间延迟,干燥时间过长,会导致苜蓿严重木质化,而且很多叶子会脱落,降低苜蓿中CP的产量[33]。
表4 不同品种苜蓿中各种营养成分生物产量及DE、NND值
Table 4 Biological yield of various nutrients and DE、NND values in alfalfa of different varieties
3.2 苜蓿中各种纤维含量之间的相互关系
苜蓿中NDF含有半纤维素、纤维素、木质素和不溶性灰分,ADF含有纤维素、木质素和酸不溶性灰分[34],与NDF比较ADF不含半纤维素。因此,我们的结果表明NDF含量的增加明显高于ADF。粗纤维是植物细胞壁的主要组成成分,陈桂华等[35]研究发现,粗纤维含量越高,植物茎秆的充实度越好,植株的抗倒能力越强。半纤维素是由几种不同类型的单糖组成的多糖,主要是戊糖和己糖,包括木聚糖、阿拉伯糖、甘露糖和半乳糖等[33],含量大约占细胞壁多糖的30%[36];纤维素是由纤维素合酶复合物在植物细胞的质膜上合成的,主要由β-D-葡聚糖链组成[37],存在于紫花苜蓿茎中,盛花期时茎中纤维素含量为30.6%[36]。木质素是植物细胞壁的主要结构成分[38],由对-香豆醇、芥子醇和松柏醇3种木质醇单体通过多种化学键连接形成[39],是一种分子量大、组成和结构复杂的天然酚醛聚合物[40]。
结果显示,ADF与NDF、CEL等指标呈强相关,相关系数r分别为0.9756,0.9955;CF(含AIA)与CF之间的相关系数r为0.9997;ADL(含AIA)与ADL之间的相关系数r为0.9989;NDF与CEL之间的相关系数r为0.9671;RFV与NDF之间的相关系数r为0.9938。苜蓿中各种纤维成分的关系呈强相关,可以用于苜蓿RFV的估测。
4 结论
不同品种苜蓿纤维成分含量之间呈强相关,酸性洗涤纤维含量与中性洗涤纤维含量之间呈强相关(r=0.9756);酸性洗涤纤维含量与纤维素含量之间呈强相关(r=0.9955);苜蓿相对饲用价值与中性洗涤纤维含量呈线性相关(r=0.9938):RFV=287.0677- 3.4709NDF(%),可以用于苜蓿RFV的估测。不同品种苜蓿生物产量不同,金皇后苜蓿粗蛋白质产量最高, 为2 697. 23 kg·hm-2, 保定苜蓿消化能产量最高, 为126 814. 45 MJ·hm-2。
References
[1] 王春军. 紫花苜蓿和红豆草的营养价值及饲喂效果评价[D]. 兰州: 甘肃农业大学, 2018.
WANG C J. Nutritional value and feeding effect evaluation of alfalfa and sainfoin[D]. Lanzhou: Gansu Agricultural University, 2018. (in Chinese)
[2] T/CAAA 001—2018 苜蓿干草质量分级[S]. 北京: 中国畜牧业协会, 2018.
T/CAAA 001—2018 Alfalfa hay quality grade [S]. Beijing: China Animal Agriculture Association, 2018. (in Chinese)
[3] 李冠真. 不同播种量、不同品种紫花苜蓿生产性能和营养价值的研究[D]. 郑州: 河南农业大学, 2013.
LI G Z. Study on the Performance and nutritional value of different seeding rates and Alfalfa varieties[D]. Zhengzhou: Henan Agricultural University, 2013. (in Chinese)
[4] 宋书红, 杨云贵, 张晓娜, 陈志飞, 张莹. 不同刈割时期对紫花苜蓿和红豆草产量及营养价值的影. 家畜生态学报, 2017(2): 44-51.
SONG S H, YANG Y G, ZHANG X N, CHEN Z F, ZHANG Y. Effect of mowing period on the yield and nutrition level of alfalfa and sainfon. Journal of Domestic Animal Ecology, 2017(2): 44-51. (in Chinese)
[5] 裴彩霞, 董宽虎, 范华. 不同刈割期和干燥方法对牧草营养成分含量的影响. 中国草地, 2002(01): 33-38.
PEI C X, DONG K H, FAN H. Effect of different harvest time and drying methods on nutrient as water soluble carbonhydrates of herbage. Journal of Grassland, 2002(01): 33-38. (in Chinese)
[6] SANDERSON M A, WEDIN W F. Cell wall composition of alfalfa stems at similar morphological stages and chronological age during spring growth and summer regrowth. Crop Science, 1988, 28(2): 342-347.
[7] SANDERSON M A, HOMSTEIN J S, WEDIN W F. Alfalfa morphological stage and its relation to in situ digestibility of detergent fiber fractions of stems. Crop Science, 1989, 29(5): 1315-1319.
[8] 张艳, 殷红梅. 关于泰安泰山气候特征对比分析. 环境与可持续发展, 2016(5): 217-219.
ZHANG Y, YIN H M. Comparative analysis on climate characteristics of mountain Tai in Tai'an City. Environment and Sustainable Development, 2016(5): 217-219. (in Chinese)
[9] GB/T 20195-2006 动物饲料试样的制备[S]. 北京: 中国标准出版社, 2006.
GB/T 20195-2006. Animal feeding stuffs-Preparation of test samples[S]. Beijing: China Standards Press, 2006. (in Chinese)
[10] GB/T6435-2014 饲料中水分的测定[S]. 北京: 中国标准出版社, 2014.
GB/T6435-2014. Determination of moisture in feedstuffs[S]. Beijing: China Standards Press, 2014. (in Chinese)
[11] GB/T 6438-2007 饲料中粗灰分的测定[S]. 北京: 中国标准出版社, 2007.
GB/T 6438-2007. Animal feeding stuffs-Determination of crude ash[S]. Beijing: China Standards Press, 2007. (in Chinese)
[12] GB/T6432-2018 饲料中粗蛋白测定方法[S]. 北京: 中国标准出版社, 2018.
GB/T6432-2018. Determination of crude protein in feed[S]. Beijing: China Standards Press, 2018. (in Chinese)
[13] GB/T 6434-2006 饲料中粗纤维的含量测定过滤法[S]. 北京: 中国标准出版社, 2006.
GB/T 6434-2006. Feeding stuffs-Determination of crude fiber content- Method with intermediate filtration[S]. Beijing: China Standards Press, 2006. (in Chinese)
[14] GB/T20806-2006 饲料中中性洗涤纤维(NDF)的测定[S]. 北京: 中国标准出版社, 2006.
GB/T20806-2006. Determination of neutral detergent fiber in feedstuffs[S]. Beijing: China Standards Press, 2006. (in Chinese)
[15] NY/T1459-2007 饲料中酸性洗涤纤维的测定[S]. 北京, 2008.
NY/T1459-2007. Determination of acid detergent fiber in feedstuff (ADF)[S]. Beijing, 2008. (in Chinese)
[16] GB/T20805-2006 饲料中酸性洗涤木质素(ADL)的测定[S]. 北京: 中国标准出版社, 2006.
GB/T20805-2006. Determination of acid detergent lignin in feedstuffs[S]. Beijing: China Standards Press, 2006. (in Chinese)
[17] 张国祺, 许兴隆, 苏积武, 郑玉德. 赛加羚羊对紫花苜蓿消化率的测定. 甘肃农业大学学报, 1998(2): 52-56.
ZHANG G Q, XU X L, SU J W, ZHENG Y D. Digest ratio determination of medicago sativa of saiga tatarica. Journal of Gansu Agricultural University, 1998(2): 52-56. (in Chinese)
[18] ASANO S, IKEDA S, KUROKAWA Y, KANDA S, ITABASHI H. ORIGINAL ARTICLE: Comparison of digestibility, passage rate and rumen fermentation between sika deer (Cervus nippon) and cattle fed alfalfa hay cubes. Animal Science Journal, 2005, 76(5): 447.
[19] 郑敏娜, 梁秀芝, 韩志顺, 康佳惠, 陈燕妮. 不同苜蓿品种在雁门关地区的生产性能和营养价值研究. 草业学报, 2018(5): 97-108.
ZHENG M N, LIANG X Z, HAN Z S, KANG J H, CHEN Y N. Productivity and nutritional value of 28 alfalfa varieties in the Yanmenguan area of Shanxi province. Acta Prataculturae Sinica, 2018(5): 97-108. (in Chinese)
[20] 王常慧, 杨建强, 王永新, 董宽虎. 不同收获期及不同干燥方法对苜蓿草粉营养成分的影响. 动物营养学报, 2004, 16(2): 60-64.
WANG C H, YANG J Q, WANG Y X, DONG K H. Effects of the different harvesting time and different drying ways on nutrient levels in alfalfa meal. Chinese Journal of Animal Nutrition, 2004, 16(2): 60-64. (in Chinese)
[21] 田春丽, 介晓磊, 刘巘, 刘芳, 郭孝, 胡华锋, 刘世亮. 硒锌与富啡酸配施对紫花苜蓿产量、营养成分及氨基酸组成的影响. 草业学报, 2014(2): 66-75.
TIAN C L, JIE X L, LIU Y, LIU F, GUO X, HU H F, LIU S L. Effects of Se-Zn and fulvic acid combined application on nutrient component and amino acids formation of alfalfa. Acta Prataculturae Sinica, 2014(2): 66-75. (in Chinese)
[22] 熊乙, 许庆方, 玉柱, 吉高, 欧翔, 马菱艺, 梁琪, 史悦, 李金俐. 不同苜蓿干草营养成分及饲用价值评价. 草地学报, 2018(5): 1262-1266.
XIONG Y, XU Q F, YU Z, JI G, OU X, MA L Y, LIANG Q, SHI Y, LI J L. Evaluation of nutritional components and feeding value of different alfalfa hay. Acta Agrestia Sinica, 2018(5): 1262-1266. (in Chinese)
[23] 李岩, 苏德荣, 李宏韬. 西北旱区喷灌条件下紫花苜蓿生长特征与品质指标的关系. 草业学报, 2018(10): 54-65.
LI Y, SU D R, LI H T. The relationship between growth characteristics and the quality of alfalfa under sprinkler irrigation in the northwest arid area of China, Acta Prataculturae Sinica, 2018(10): 54-65. (in Chinese)
[24] ABID M, MANSOUR E, YAHIA L B, Bachar K, Ben K A, Ferchichi A. Alfalfa nutritive quality as influenced by drought in South-Eastern Oasis of Tunisia. Italian Journal of Animal Science. 2016, 15(2): 334-342.
[25] SUTTIE J M, DOCREP F. Hay and straw conservation - for small- scale farming and pastoral conditions. CAB Direct, 2000. www. http: //xueshu.baidu.com/usercenter/paper/show?paperid=f968312edfdca 28017cc5cfe45703f73
[26] 王彦华, 王成章, 李德锋, 郑爱荣, 齐胜利, 李冠真. 播种量和品种对紫花苜蓿植株动态变化、产量及品质的影响. 草业学报, 2017(02): 123-135.
WANG Y H, WANG C Z, LI D F, ZHENG A R, QI S L, LI G Z. Effects of seeding rate on plant number, production performance, and quality of alfalfa. Acta Prataculturae Sinica, 2017(02): 123-135. (in Chinese)
[27] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5): 868-882.
ZHANG C M , SHI S L , WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018, 51(5): 868-882. (in Chinese)
[28] 刘志英, 李西良, 李峰, 陶雅, 刘磊, 王宗礼, 孙启忠. 越冬紫花苜蓿根系性状与秋眠性的关系及其抗寒效应. 中国农业科学, 2015, 48(9): 1689-1701.
LIU Z Y, LI X L, LI F, TAO Y, LIU L , WANG Z L, SUN Q Z. Response of alfalfa root traits to fall dormancy and its effect on winter hardiness. Scientia Agricultura Sinica, 2015, 48(9): 1689-1701. (in Chinese)
[29] 刘贵河, 章杏杏, 王堃, 韩建国. 硼、钼、锌配施对紫花苜蓿草产量和粗蛋白质含量的影响. 中国草地, 2005(6): 15-20.
LIU G H, ZHANG X X, WANG K, HAN J G. Effects of Boron, Molybdenum and Zinc on the yield and crude protein content of alfalfa. Grassland of China, 2005(6): 15-20. (in Chinese)
[30] 魏志标, 柏兆海, 马林, 张福锁. 中国苜蓿、黑麦草和燕麦草产量差及影响因素. 中国农业科学, 2018, 51(3): 507-522.
WEI Z B, BAI Z H, MA L, ZHANG F S. Yield gap of alfalfa, ryegrass and oat grass and their influence factors in China. Scientia Agricultura Sinica, 2018, 51(3): 507-522. (in Chinese)
[31] 魏志标, 柏兆海, 马林, 张福锁. 中国栽培草地氮磷流动空间特征. 中国农业科学, 2018, 51(3): 535-555.
WEI Z B, BAI Z H , MA L , ZHANG F S . Spatial characteristics of nitrogen and phosphorus flow in natural grassland of China Scientia Agricultura Sinica, 2018, 51(3): 535-555. (in Chinese)
[32] 武文莉, 吴冬强, 张静, 郭正刚, 刘慧霞. 铁锌配施对河西走廊地区紫花苜蓿品质和相对饲用价值的影响. 中国草地学报, 2018(4): 62-67.
WU W L, WU D Q, ZHANG J, GUO Z G, LIU H X. Effects of Fe and Zn on quality and relative feeding values of Alfalfa in the Hexi Corridor. Chinese Journal of Grassland, 2018(4): 62-67. (in Chinese)
[33] FAN W, GE G, LIU Y, WANG W, LIU L, JIA Y. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biology, 2018, 18(1): 78.
[34] TONG Z, Li H, ZHANG R, MA L, DONG J, WANG T. Co-downregulation of the hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Science, 2015, 239: 230-237.
[35] 陈桂华, 邓化冰, 张桂莲, 唐文帮, 黄璜. 水稻茎秆性状与抗倒性的关系及配合力分析. 中国农业科学, 2016, 49(3): 407-417.
CHEN G H, DENG H B, ZHANG G L, TANG W B, HUANG H. The correlation of stem characters and lodging resistance and combining ability analysis in rice. Scientia Agricultura Sinica, 2016, 49(3): 407-417. (in Chinese)
[36] 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L. )生物能源利用的研究进展. 中国农业科学, 2013, 46(8): 1694-1705.
WANG X J, ZHANG S Z, LIN S S, DENG Z G, JIN L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L. ). Scientia Agricultura Sinica, 2013, 46(8): 1694-1705. (in Chinese)
[37] SPEICHER T, Li P, WALLACE I. Phosphoregulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants, 2018, 7(3): 52.
[38] MA Q H. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. Journal of Experimental Botany, 2010, 61(10): 2735-2744.
[39] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54(1): 519-546.
[40] LIU Q, LUO L, ZHENG L. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 2018, 19(2): 335.
The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa
LI ZeMin, ZHANG Chen, ZHANG ChongYu, ZHANG GuiGuo
(CollegeofAnimalScienceandTechnology,ShandongAgricultural University/Key Laboratoryof Animal Biotechnology and Disease Control & PreventionofShandong Province, Tai’an 271018, Shandong)
Abstract:【Objective】To determine the content and the variation degree of nutritive and the relationship between the content of various fiber components in different alfalfa varieties. Compare the biological yields of different alfalfa varieties.【Method】Two experiments were conducted. In Experiment 1, selected 16 alfalfa varietiesincludingWL343HQ, WL353HQ, WL354HQ, WL363HQ, WL366HQ, Algonuin, Golden empress, Zhongmu No.3, Zhongmu No.6, Luduo, Luhuang No. 1, Wudi, Lufeng No. 1, Baoding, Zhongyuan804, Aohanand planted on October 2, 2016.Each variety was set up twice and randomly arranged plots.The planting area of each alfalfa variety was 18 m2 (3 m×6 m), row spacing was 30 cm, and 10 rows were sown. Harvested at the beginning of flowering on May 23, 2018 and determined the biological yield. In experiment 2,prepared 32 samples and determined the content of nutrients such as crude ash (ASH), crude protein (CP), crude fat (EE), crude fiber (CF),neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin (ADL) in the dry matter (DM). 【Result】The results showed that: (1) In alfalfa DM of different varieties, the contents of ASH, NDF, ADF, HCEL, CEL and ADL were significantly different (P<0.01), but the difference of EE content was not significantly (P=0.527). The ASH content of WL363HQ alfalfa was the highest, which was 8.53%. The highest CP content of golden empress alfalfa was 27.19%. The content of EE and CF in baoding 804 alfalfa was the highest, which were 3.01% and 36.69%, respectively. The content of NDF, ADF, CEL and ADL in zhongyuan 804 alfalfa was the highest, which were 57.02%, 42.73, 34.43% and 7.92% respectively. The average values of ASH, CP, EE, CF, NDF, ADF, ADL, CEL and HCEL in alfalfa DM of different varieties were 7.83%, 21.58%, 2.51%, 33.25%, 50.12%, 36.76%, 6.98%, 29.43% and 13.36%, respectively; The coefficient of variation (CV) is between 5.16% and 12.06%. (2) There was a strong correlation between ADF and CEL, ADL content in alfalfa, and the correlation coefficients were 0.9756, 0.9955 and 0.9455. The correlation coefficients between CF and ADF, CEL, ADL content were 0.9114, 0.8849 and 0.9375, respectively. The correlation coefficient between CF (including AIA) and CF was 0.9997. The correlation coefficients between NDF and CEL, ADL, HCEL content were 0.9671, 0.9396 and 0.8736, respectively. The correlation coefficient between ADL (including AIA) and ADL was 0.9989. The correlation coefficients between RFA and ADF, CEL were 0.9826 and 0.9700. (3)There was a strong correlation between relative feeding value (RFV) and NDF content (r=0.9938), which can be used for the estimation of alfalfa RFV: RFV=287.0677-3.4709 NDF (%) n=16 P<0.01.(4)The yields of different alfalfa varieties were different. Baoding alfalfa has the highest yield of crude fat, carbohydrate, hemiculose and cellulose, which were respectively 393.59, 9 308.22, 1 976.32 and 4 208.05 kg·hm-2; The yield of golden empress's crude protein was the highest, which was 2697.23 kg·hm-2, and the yield of Baoding's digestible energy (DE) was the highest, which was 126814.45 MJ·hm-2. 【Conclusion】There was a strong correlation between the content of different alfalfa fiber components, and the RFV value of alfalfa was strongly correlated with the NDF component; The yields of different alfalfa varieties are different.
Key words: alfalfa; nutrients; biological yield
收稿日期:2019-02-25;
接受日期:2019-10-28
基金项目:国家重大研发项目中韩合作计划(SQ2019YFE010236)、国家“十三五”重大研发计划(2018YFD0502104-3)、山东省现代农业产业技术体系产业创新团队项目(SDAIT-27-02;SDAIT-23-05)、山东省农业重大应用技术创新项目(SDZD-2017)、山东省良种工程(南种北繁,2017LZN036)、山东省“双一流”奖补资金(SDSYL2016)、山东省农业重大应用技术创新项目(SDZDJS-2017)
联系方式:李泽民,E-mail:779575896@qq.com。通信作者张桂国,E-mail:zhanggg@sdau.edu.cn。通信作者张崇玉,E-mail:17225122@163.com
开放科学(资源服务)标识码(OSID):width=42.5,height=42.5
(责任编辑 林鉴非)
|
|