奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 236|回复: 0

长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合...

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-14 13:04:16 | 显示全部楼层 |阅读模式
扫码加微信
长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合分析
李亚林1,张旭博2,任凤玲1,孙楠1,徐梦2,徐明岗1

(1中国农业科学院农业资源与农业区划研究所/耕地培育技术国家工程实验室,北京 100081;2中国科学院地理科学与资源研究所/生态网络观测与模拟重点实验室,北京 100101)

摘要:【目的】施肥是影响农田土壤溶解性有机碳、氮的重要因子。探讨在不同利用方式、熟制、土壤pH等条件下长期施肥对土壤溶解性有机碳(DOC)、溶解性有机氮(DON)含量的影响,为农田土壤碳氮管理提供指导。【方法】收集2000—2019年已发表文献72篇,获得相对独立数据(510组DOC和208组DON),采用整合分析(Meta-analysis)方法定量分析不同利用方式、熟制和土壤pH下施肥对DOC和DON含量的影响。【结果】与不施肥相比,施肥均能显著提高土壤DOC和DON含量,其中施有机肥(单施或配施)的提高幅度(60%和93%)是化肥(13%和29%)的4.6倍和3.2倍。不同利用方式下,施肥能显著提高旱地土壤DOC和DON含量,且旱地施用有机肥提升土壤DOC和DON的幅度显著高于水旱轮作。不同熟制比较,一年一熟下施用有机肥后DOC含量提高85 %,显著高于一年两熟(38%);不同pH土壤比较,碱性土壤(pH>7.5)上施用有机肥后DOC和DON含量分别提高了85%和162%,显著高于6.5<pH<7.5的中性土壤(48%和70%)和pH<6.5 的酸性土壤(32%和61%)。【结论】施用有机肥(单施或配施)可显著提高DOC和DON含量,但其效果会因利用方式、熟制、土壤pH等的不同有较大差异,因此,有机肥的施用应综合考虑相应的土壤和环境条件。

关键词:长期施肥;土壤溶解性有机碳;土壤溶解性有机氮;利用方式;熟制;土壤pH;整合分析

0 引言
【研究意义】土壤中能够溶解于水或酸、碱溶液且粒径<0.45 μm的含碳、氮有机化合物称为土壤溶解性有机碳(dissolved organic carbon,DOC)和土壤溶解性有机氮[1](dissolved organic nitrogen,DON)。DOC和DON是土壤有机碳、氮组分中活性较高的组分。一方面,DOC是土壤活性有机碳的重要组成部分,也是农田土壤的活性碳库和养分库,是土壤微生物可直接吸收利用的有机碳源[2]。有研究表明,估计有11%—44%的DOC能够被微生物快速分解[3]。DON可以直接被植物根系吸收或者在土壤微生物的作用下转化为无机氮被植物吸收[4]。另一方面,溶解性碳、氮的更新周期短、移动性较强,可随水移动,易造成碳和氮的损失及水体污染[5]。【前人研究进展】有研究表明,施肥是影响DOC和DON含量最为深刻的农业措施之一[6-7]。杨静等[8]认为长期添加有机肥能够显著增加土壤DON含量,提高土壤供氮潜力。常单娜等[9]依托在河西走廊灌漠土上的长期定位试验(开始于1988年)研究表明,与不施肥相比,化肥和有机肥分别显著增加16%和37%的DOC含量,且同时分别增加了182%和334%的DON含量。高忠霞等[10]研究认为,长期施肥可不同程度的提高土壤溶解性有机物的含量,其中以施用有机肥和秸秆处理的增加幅度最高。但是也有研究发现,施用化肥能够抑制土壤溶解性有机物的释放,而且一些有机肥的施用导致了土壤溶解性有机氮含量的降低[11-12]。如张璐等和梁尧等系统分析了施肥对黑土活性有机碳含量的影响,发现单施化肥会降低土壤活性有机碳及土壤溶解性有机碳的含量[13-14]。VESTGARDEN等[15]也发现,土壤溶解性有机碳、氮含量在连续多年施用化肥下显著降低。因此,施肥对土壤溶解性有机碳、氮含量的影响存在着一定的不确定性,急需在全国范围内系统量化施肥对土壤溶解性有机碳、氮含量的影响程度。【本研究切入点】很多研究者都基于一个或几个长期定位试验点探讨施肥对DOC和DON含量的影响及其变化机制,其结果往往都受到特定区域及其环境条件的限制。因此,为了整体研究施肥对于DOC和DON含量的影响程度,应对全国范围内相对独立的研究进行大数据汇总分析。【拟解决的关键问题】本研究试图通过对全国农田长期定位试验DOC和DON含量变化的文献资料的整理和分析,系统、定量的评价长期施肥对DOC和DON含量的影响效应,并分析不同利用方式、熟制和pH下施肥对DOC和DON含量的影响。

1 材料与方法
1.1 数据收集
本研究通过从中国知网、维普、百度学术、Web of science和Science Direct等文献数据库,设定检索时间“2000—2019”,选择“中国农田”“长期施肥”“土壤有机碳氮组分”为关键词进行相关文献搜集。筛选文献标准如下:(1)试验点为中国农田;(2)同一试验包含对照组(不施肥)和处理组(化肥和有机肥),且处理组化肥和有机肥均包含两种使用方式(单施或配施);(3)文献中重复数≥3;(4)对于极强酸性(pH<4.4)和极强碱性(pH>9.6)的数据进行剔除。共筛选出已发表文献72篇,其中64篇文献含有DOC含量,包含510组数据样本;23篇文献含有DON含量,包含208组数据样本。所选取的文献中平均土壤样本深度为19.11 cm。各文献中除了包含土壤有机碳含量、土壤溶解性有机碳含量、土壤溶解性有机氮含量外,还包含每个试验点的基本信息(经度、纬度)、pH、熟制、利用方式、土壤类型、试验年限及基本理化性质等,其中熟制分为一年一熟、一年两熟和一年三熟;利用方式分为水田、水旱轮作和旱地;pH分为酸性土壤(pH < 6.5)、中性土壤(6.5 < pH < 7.5)和碱性土壤(pH > 7.5)。

本文中所有的数据均来自已发表的文献。在数据搜集的过程中,如果文献中的数据是以图表形式表现的,则采用GetData Graph Digitizer 2.24 软件来获得;文献中土壤有机质(SOM)含量全部乘以转化系数0.58得到土壤有机碳含量(SOC,g·kg-1)。如图1所示,所收集的DOC和DON数据经对数(ln)转换后均符合正态分布(P<0.01),满足Meta分析的必要条件。

width=439.95,height=191.65
ln(x)为原始数据经对数(ln)转换后的数值;曲线代表数据的高斯分布,P为显著性检验

ln(x) is the value of the original data after in conversion. The curve is a Gaussian distribution fitted to frequency data and P<0.01 suit for the distribution

图1 土壤溶解性有机碳、氮的分布

Fig. 1 Distribution of soil dissolved organic carbon and soil dissolved organic nitrogen

1.2 数据分析
整合分析(Meta-analysis)是一种对多个相对独立的同类研究结果进行综合汇总并得出结论的一种定量方法[16],其在生态学研究方面的应用日益增加,如温室气体减排、土壤碳循环等[17-19]。在进行效应量计算时,每组数据中必须包含平均数(means,M)、标准差(standard deviations,SD)和样本量[20](sample sizes,n),若文献中给出的是标准误(standard errors,SE),则用公式(1)进行转换:

width=50.55,height=15.15 (1)
整合分析需要对每个数据集进行变异性估计,然而一些文献中没有明确指出SD或SE,因此我们采用整个数据库的变异系数来计算缺失的SD[21]。统计学指标采用响应比(response ratios,RR)表示,并计算其95%的置信区间(95% CI)。在分析过程中,我们采用自然对数响应比(lnRR)反映不同条件下施肥对DOC和DON含量的影响程度[22],可由公式(2)进行计算:

width=138.6,height=14.85 (2)
式中,width=10.15,height=15.2和width=11,height=15.2分别代表处理组和对照组变量的平均值。如果width=13.15,height=18.1和width=14.1,height=18.1呈正态分布,且二者都大于0,则width=41.8,height=15.2近似正态分布,均值等于真实响应比[23],并且平均值的变异系数V、权重系数wij、权重响应比RR++、RR++的标准误(S)以及95% CI可通过以下公式计算[24]。

width=67.3,height=30.3 (3)

width=34.8,height=25.6 width=10.5,height=16.5 (4)
width=86.8,height=58.15 (5)

width=90.3,height=46.4 (6)

width=129.8,height=14.6 (7)
式(3)中SDt和SDc分别代表处理组和对照组的标准差,nt和nc分别代表处理组和对照组的样本数。Meta分析在合并效应值之前,首先要明确试验处理间是否真正存在异质性。当各试验处理间差异较大或者存在明显的异质性时,Meta分析的结果就不太可靠。若P<0.05,表明多个研究结果有异质性,则采用随机效应模型(random effect model,REM),反之采用固定效应模型(fixed effect model,FEM)进行分析[25]。

本研究采用Excel 2010进行数据统计整理,采用MetaWin 2.1软件进行Meta分析,SPSS 18进行数据分析以及Origin 2019进行作图。

2 结果
2.1 不同施肥处理下DOC和DON含量的差异
不同施肥处理下土壤溶解性有机碳和土壤溶解性有机氮含量如表1所示。统计分析表明,施用有机肥的DOC和DON含量均显著高于(P<0.05)施化肥和不施肥,而施化肥和不施肥处理DOC和DON含量无显著差异(P>0.05)。其中,不施肥、施化肥和施有机肥处理DOC含量均值分别为90.81、97.19、141.34 mg·kg-1,而施有机肥后DOC含量比不施肥和施化肥后含量提高了56%和45%;不施肥、施化肥和施有机肥处理DON含量均值分别为12.36、16.70、24.39 mg·kg-1,而施有机肥后DON含量比不施肥和施化肥后含量高出97%和46%。

表1 不同施肥处理下DOC和DON含量

Table 1 The contents of DOC and DON under different fertilization treatments (mg·kg-1)


不同小写字母分别表示各处理间差异显著(P<0.05)

Different lowercase lettersmean significant difference among different treatments (P<0.05)

2.2 不同利用方式、熟制和土壤pH下施肥对DOC含量的影响
与不施肥相比,施用化肥和有机肥均显著提高土壤溶解性有机碳含量,且分别提高了13%(CI,8%—18%)和60%(CI,55%—66%)(图2)。不同利用方式、熟制和土壤pH下,施肥对DOC含量的影响程度存在一定差异(图2,表2)。与不施肥相比,不同利用方式下施有机肥均显著提高DOC含量,其中旱地提高幅度最大(76%),显著高于水田和水旱轮作(34%和39%),而水田和水旱轮作二者提高幅度差异不显著;施化肥仅在旱地和水旱轮作下显著提高DOC含量,提高幅度前者(18%)大于后者(8%),而施化肥没有显著提高水田DOC含量(图2,表2)。

与不施肥相比,不同熟制下施有机肥均显著提高DOC含量,其中一年一熟提高幅度最大(85%),显著高于一年两熟(38%),而一年一熟和一年两熟二者提高幅度均与一年三熟的差异不显著;施化肥仅在一年一熟和一年两熟下显著提高DOC含量,二者提高幅度差异不显著,且施化肥没有显著提高一年三熟下DOC含量(图2,表2)。

不同土壤pH条件下,相比不施肥,施化肥和施有机肥均显著提高DOC含量,其中,施有机肥对DOC含量的提高幅度在不同土壤pH下存在显著差异,其提高幅度均随着土壤pH的升高而增加,即碱性土壤(85%)>中性土壤(48%)>酸性土壤(32%);施化肥对DOC含量的提高幅度仅在碱性土壤(19%)和酸性土壤(10%)之间存在显著差异,前者显著高于后者,而碱性土壤和中性土壤二者提高幅度差异不显著(图2,表2)。

width=360.7,height=281.5
点和误差线分别代表增加的百分数及其 95%的置信区间,如果 95%的置信区间没有跨越零线表示处理与对照存在显著差异;括号内的数值代表样本数。下同

Dots with error bars denote the percent change and 95% CI, respectively. The 95% CI that do not overlap zero line means significant difference between treatment and control. Numbers are the pairs of comparisons. The same as below

图2 不同利用方式、熟制和土壤pH下施化肥和有机肥对DOC含量增加量的影响

Fig. 2 Percent change of DOC content in response to mineral fertilizer and manure application compared to no fertilizer under different use types, cropping systems and soil pH

表2 不同利用方式、熟制和土壤pH下同一施肥方式对土壤溶解性有机碳氮含量提升幅度(%)的差异性比较

Table 2 Difference of the increments (%) of DOC and DON contents in the same fertilization strategies under different use types, cropping systems and soil pH


不同小写字母表示不同条件同一施肥下对土壤溶解性有机碳氮含量提升幅度(%)在5%水平上差异显著

Different lowercase letters mean significantly difference of the increments (%) of DOC and DON contents under the same condition at the level of 5%

2.3 不同利用方式、熟制和土壤pH下施肥对DON含量的影响
与不施肥相比,施化肥和有机肥对DON含量的影响显著,提高幅度分别为29%(CI,19%—40%)和93%(CI,81%—106%)(图3)。分析结果表明,不同利用方式、熟制和土壤pH下,施肥对DON含量的影响程度存在一定差异(图3,表2)。不同利用方式下,施肥对DON含量有一定的影响。相比不施肥,不同利用方式下施有机肥均显著提高DON含量,其中旱地提高幅度最大(136%),显著高于水旱轮作(52%),而旱地和水旱轮作二者提高幅度均与水田的差异不显著;施化肥显著提高旱地和水田DON含量,却没有显著提高水旱轮作DON含量,其提高幅度在不同利用方式之间差异不显著(图3,表2)。

width=348.85,height=255.8
图3 不同利用方式、熟制和土壤pH下施化肥和有机肥对DON含量增加量的影响

Fig. 3 Percent change of the content of DON in response to mineral fertilizer and manure application compared to no fertilizer under different use types, cropping systems and soil pH

对于不同熟制,施肥对DON含量的影响存在一定的差异,但其提高幅度差异均不显著。与不施肥相比,在不同熟制下施有机肥均显著提高DON含量,且一年一熟、一年两熟和一年三熟条件下提高幅度分别为124、87和55%;施化肥显著增加一年一熟(23%)和一年两熟(36%)下DON含量,却没有显著提高一年三熟下DON含量(图3,表2)。

不同土壤pH下,施肥对DON含量的影响存在明显差异。与不施肥相比,不同土壤pH下施有机肥均显著提高DON含量,其中碱性土壤提高幅度最大(162%),显著高于中性土壤(70%)和酸性土壤(61%),而中性土壤和酸性土壤二者提高幅度差异不显著;施化肥显著提高酸性土壤和碱性土壤DON含量,却没有显著提高中性土壤DON含量,其提高幅度在不同土壤pH之间差异不显著(图3,表2)。

2.4 DOC和DON含量的相互关系
由图4可知,DOC和DON含量呈极显著线性正相关(P<0.01),表明两者之间存在相互依赖、转化的关系,其含量随着某一方的增加而呈现出上升趋势。另外,DOC含量与年均有机肥碳归还量呈极显著的非线性相关关系(图5-a),表明随着年均有机肥碳归还量的增加,DOC含量增加的速率越来越小,并有可能趋于饱和;DON含量与年均有机肥氮输入量呈极显著正相关关系(图5-b),线性拟合的斜率0.06,表明当有机肥氮投入量每增加1.00 kg·hm-2时,DON含量增加0.06 mg·kg-1。

width=227.25,height=184.45
图4 DOC和DON含量的关系

Fig. 4 Relationship between the content of DOC and DON

3 讨论
3.1 施肥对DOC和DON含量的影响
施肥是影响土壤溶解性有机碳、氮含量变化的重要因素之一。整合分析结果表明,与不施肥相比,施肥能够显著提高DOC和DON含量,这与邵兴芳等[26]研究结果一致。施用有机肥对DOC和DON的提高幅度分别是施化肥的4.6倍和3.2倍。其主要原因是:一方面有机肥本身含有丰富的有机营养成分[27]及溶解性有机碳、氮[28],可以促进土壤微生物的生长繁殖[29-30];另一方面,有机肥的大量投入补充了土壤有机碳源[31],促进溶解性有机碳、氮的生成。此外,长期施用有机肥能够改变土壤的物理性质,提高通气透水性,促进土壤氮素的矿化作用,有利于DON的形成[32-33]。

width=420.85,height=162.5
图5 DOC(a)和 DON(b)与年均有机肥碳、氮投入量的关系

Fig. 5 Relationship between the contents of DOC (a) or DON (b) and the amounts of annual manure carbon and nitrogen input

3.2 熟制和利用方式对DOC和DON含量的影响
本研究表明,与不施肥相比,在一年一熟和一年两熟条件下,施用化肥和有机肥有利于增加土壤溶解性碳、氮含量,而一年三熟条件下施化肥土壤溶解性碳、氮含量并未显著增加(图2,图3,表2)。

这可能是由于一年一熟种植制度主要分布在东北及西北地区,其年均温较低且降水量较少,微生物活性低,从而降低了微生物对土壤溶解性有机碳、氮的分解。研究表明,降雨后,DOC和DON可以通过水分或土壤溶液的作用从表层土壤迁移至深层土壤[34-35],从而减少了表层土壤DOC和DON含量,降水量较少也降低了土壤溶解性有机碳氮的淋溶和下渗。另外,一年三熟条件下,对土壤扰动较多。而耕作会使土壤理化性质及生物学特性发生改变,提高土壤的通气透水性,有利于植物根系的生长发育,增加植物对DOC和DON的吸收利用,进而导致土壤溶液中溶解性有机碳、氮含量的降低。

对旱地来说,施化肥和有机肥都能显著提高DOC和DON含量且提升幅度显著高于水田和水旱轮作(图2,图3,表2),这与王桂跃等研究结果存在一定的差异[36]。首先,水田及水旱轮作主要分布在中国南方地区,其积温高于旱地,而高温有利于土壤有机碳的周转,不利于DOC和DON的积累;其次,溶解性有机碳、氮作为土壤活性物质易溶于水移动[5],而旱地土壤水分含量较低且盐分含量相对较高,降低了DOC和DON的移动性。另外,旱地条件下也能够抑制土壤微生物的活性,从而减少微生物对DOC和DON的利用[37];最后水旱轮作地干湿交替加强对土壤结构的扰动,促进土壤有机碳的分解和团聚体的分散使DOC和DON含量增加[38-39]。

3.3 土壤pH对DOC和DON含量的影响
土壤酸碱度是影响土壤溶解性有机碳、氮含量的重要因素之一[40]。土壤溶解性有机碳、氮主要是由一些高分子、多官能团的电解质溶液组成,它的溶解能力主要依靠其电荷密度[41]。不同土壤pH下,与不施肥相比,施化肥和有机肥在碱性和酸性条件下均能显著提升DOC和DON含量,且其提升效果均在碱性(pH>7.5)条件下达到最大。其原因可能是土壤pH升高时,能够大大提高土壤中溶解性有机物的溶解性。Tipping等[42]研究表明,当pH升高0.5个单位时,土壤中可移动的有机质量将增加50%。众多研究表明,随着pH升高,土壤中铁铝氧化物和氢氧化物带正电荷性降低,对DOC和DON的吸附量减少[43-44],同时土壤C、N矿化速率提高[45],使得土壤溶液中DOC和DON含量升高。另外,长期施用有机肥能够提高土壤pH,增加土壤微生物的数量,大大提高土壤微生物的活性,促进土壤有机物质的转化,从而提高DOC和DON含量[46]。

4 结论
(1)施肥均能显著增加DOC和DON含量;(2)施有机肥(单施或配施)对DOC和DON含量的提高幅度是化肥的4.6倍和3.2倍;(3)不同利用方式、熟制和土壤pH条件下,施有机肥和化肥对DOC和DON含量的影响程度存在明显差异。其中,与不施肥相比较,旱地施用有机肥对DOC的提高幅度显著高于水田和水旱轮作,其对DON的提高幅度显著高于水旱轮作,旱地施用化肥对DOC的提高幅度显著高于水田;施有机肥在一年一熟下DOC含量的提高幅度显著高于一年两熟;碱性土壤上施用有机肥后DOC和DON含量的提高幅度显著高于中性土壤和酸性土壤,碱性土壤上施用化肥后DOC含量的提高幅度显著高于酸性土壤。(4)DOC和DON含量具有协同增加的趋势,且与有机肥碳、氮输入量呈显著的正相关关系。

References

[1] KALBITZ K, KAISER K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. Journal of Plant Nutrition and Soil Science, 2008,171(1): 52-60.

[2] BURFORD J R, BREMNER J M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology & Biochemistry, 1975, 7(6): 389-394.

[3] SACHSE A, BABENZIEN D, GINZEL G, GELBRECHT J, STEINBERG C E W. Characterization of dissolved organic carbon (doc) in a dystrophic lake and an adjacent fen. Biogeochemistry, 2001, 54(3): 279-296.

[4] 周碧青, 陈成榕, 杨文浩, 张黎明, 邢世和. 茶树对溶解性有机和无机态氮的吸收与运转特性. 植物营养与肥料学报, 2017, 23(1): 189-195.

ZHOU B Q, CHEN C R, YANG W H, ZHANG L M, XING S H. Absorption and operation characteristics of soluble organic and inorganic nitrogen in tea plant. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 189-195. (in Chinese)

[5] 潘根兴, 曹建华. 土壤碳及其在地球表层系统碳循环中的意义. 第四纪研究, 2000(4): 325-334.

PAN G X, CAO J H. Soil carbon and its significance in the carbon cycle of the earth's surface system. Quaternary Sciences, 2000(4): 325-334. (in Chinese)

[6] 张迪, 韩晓增. 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响. 中国农业科学, 2010, 43(13): 2715-2723.

ZHANG D, HAN X Z. Effects of long-term different vegetation cover and fertilization management on the active organic carbon of black soil. Scientia Agricultura Sinica, 2010, 43(13): 2715-2723. (in Chinese)

[7] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化. 土壤学报, 2006, 43(5): 723-729.

XU M G, YU R, WANG B R. Changes of index of active organic matter and carbon pool management in red soil under different fertilization for a long time. Acta Pedologica Sinica, 2006, 43(5): 723-729. (in Chinese)

[8] 杨静, 聂三安, 杨文浩, 陈成榕, 张黎明, 周碧青, 邢世和. 不同施肥水稻土溶解性有机氮组分差异及影响因素. 土壤学报, 2018, 55(4): 955-966.

YANG J, NIE S A, YANG W H, CHENG C R, ZHANG L M, ZHOU B Q, XING S H. The difference of soluble organic nitrogen in rice soil under different fertilization and its influencing factors. Acta Pedologica Sinica, 2018, 55(4): 955-966. (in Chinese)

[9] 常单娜, 曹卫东, 包兴国, 白金顺, 张久东, 卢秉林, 高嵩涓, 曾闹华, 王雪翠, 志水胜好. 西北灌漠土长期不同施肥改变土壤溶解性有机质的化学及光谱学特性. 光谱学与光谱分析, 2016, 36(1): 220-225.

CHANG D N, CAO W D, BAO X G, BAI J S, ZHANG J D, LU B L, GAO S J, ZENG N H, WANG X C, ZHI S S H. The chemical and spectral characteristics of soil soluble organic matter were changed by different fertilization in the desert soils in northwest China.Spectroscopy and Spectral Analysis, 2016, 36(1): 220-225. (in Chinese)

[10] 高忠霞, 周建斌, 王祥, 陈兴丽, 杨学云. 不同培肥处理对土壤溶解性有机碳含量及特性的影响. 土壤学报, 2010, 47(1): 115-121.

GAO Z X, ZHOU J B, WANG X, CEHN X L, YANG X Y. Effects of different fertilizer treatments on soil soluble organic carbon content and properties. Acta Pedologica Sinica, 2010, 47(1): 115-121. (in Chinese)

[11] 卢萍, 单玉华, 杨林章, 韩勇. 秸秆还田对稻田土壤溶液中溶解性有机质的影响. 土壤学报, 2006(5): 736-741.

LU P, SHAN Y H, YANG L Z, HAN Y. Effects of straw mulching on dissolved organic matter in paddy soil solution. Acta Pedologica Sinica, 2006(5): 736-741. (in Chinese)

[12] BARTON L, WAN G Y, COLMER T D. Turfgrass (Cynodon dactylon L.) sod production on sandy soils: II. Effects of irrigation and fertiliser regimes on N leaching. Plant and Soil, 2006, 284(1/2): 147-164.

[13] 张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁, 刘骅. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655.

ZHANG L, ZHANG W J, XU M G, CAI Z J, PENG C, WANG B R, LIU Y. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. (in Chinese)

[14] 梁尧, 韩晓增, 宋春, 李海波. 不同有机物料还田对东北黑土活性有机碳的影响. 中国农业科学, 2011, 44(17): 3565-3574.

LIANG Y, HAN X Z, SONG C, LI H B. Effects of different organic materials on the active organic carbon of northeast black soil. Scientia Agricultura Sinica, 2011, 44(17): 3565-3574. (in Chinese)

[15] VESTGARDEN L S, ABRAHAMSEN G, STUANES A O. Soil solution response to nitrogen and magnesium application in a scots pine forest. Soil Science Society of America Journal, 2001, 65(6): 1812-1823.

[16] GLASS G V. Primary, secondary, and Meta-Analysis of research. Educational Researcher, 1976, 5(10): 3-8.

[17] AKIYAMA H, YAN X, YAGI K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 2010, 16(6): 1837-1846.

[18] REN F L, ZHANG X B, LIU J, SUN N, SUN Z G, WU L H, XU M G. A synthetic analysis of livestock manure substitution effects on organic carbon changes in China's arable topsoil. Catena, 2018, 171: 1-10.

[19] SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013, 71(Complete): 170-175.

[20] LUO Y Q, HUI D F, ZHANG D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A Meta-analysis. Ecology, 2006, 87(1): 53-63.

[21] GEISSELER D, SCOW K M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology and Biochemistry, 2014, 75: 54-63.

[22] HEDGES L V, CURTIS G P S. The Meta-Analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.

[23] CURTIS P S, WANG X. A Meta-Analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia (Berlin), 1998, 113(3): 299-313.

[24] LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20(5): 1366-1381.

[25] 王若琦, 秦超英. Meta分析中异质性检验方法的改进. 科学技术与工程, 2012, 12(10): 12-15.

WANG R Q, QIN C Y. Improvement of heterogeneity test in meta-analysis. Science Technology and Engineering, 2012, 12(10). (in Chinese)

[26] 邵兴芳, 徐明岗, 张文菊, 黄敏, 周显, 朱平, 高洪军. 长期有机培肥模式下黑土碳与氮变化及氮素矿化特征. 植物营养与肥料学报, 2014, 20(2): 326-335.

SHAO X F, XU M G, ZHANG W J, HUANG M, ZHOU X, ZHU P, GAO H J. Carbon and nitrogen changes and mineralization characteristics of black soil under long-term organic fertilization. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 326-335. (in Chinese)

[27] 杨玉爱, 王珂, 叶正钱, 魏幼璋. 有机肥料资源及其对微量元素的螯溶和利用的研究. 土壤通报, 1994(S1): 21-25, 7.

YANG Y A, WANG K ,YE Z Q, WEI Y Z. Study on organic fertilizer resources and its chelation and utilization of trace elements. Chinese Journal of Soil Science, 1994(S1), 25(7): 21-25, 7. (in Chinese)

[28] 赵满兴, 周建斌, 陈竹君, 杨绒. 有机肥中溶解性有机碳、氮含量及其特性. 生态学报, 2007(1): 397-403.

ZHAO M X, ZHOU J B, CHEN Z J, YANG R. Contents and characteristics of soluble organic carbon and nitrogen in organic fertilizers. Acta Ecologica Sinica, 2007, 27(1): 397-403. (in Chinese)

[29] 徐华勤, 肖润林, 邹冬生, 宋同清, 罗文, 李盛华. 长期施肥对茶园土壤微生物群落功能多样性的影响. 生态学报, 2007(8): 3355-3361.

XU H Q, XIAO R L, ZHOU D S, SONG T Q, LUO W, LI S H. Effects of long-term fertilization on the functional diversity of soil microbial communities in tea plantations. Acta Ecologica Sinica, 2007(8): 3356-3361. (in Chinese)

[30] 杜相革, 董民, 曲再红, 史咏竹. 有机农业和土壤生物多样性. 中国农学通报, 2004(4): 80-81, 83.

DU X G, DONG M, QU Z H, SHI Y Z. Organic agriculture and soil biodiversity. Chinese Agricultural Science Bulletin, 2004(4): 80-81, 83. (in Chinese)

[31] JACKSON L E,CALDERON F J,STEENWERTN K L,SCOW K M,ROLSTON D E. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma, 2003, 114(3): 305-317.

[32] 朱兆良. 中国土壤的氮素肥力与农业中的氮素管理//沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998: 160-211.

ZHU Z L. Nitrogen fertility in Chinese soil and nitrogen management in agriculture//SHEN S M. Soil Fertility in China. Beijing: China Agriculture Press, 1998: 160-211. (in Chinese)

[33] 陈玉真, 王峰, 尤志明, 张文锦, 翁伯琦. 不同类型茶园土壤氮素矿化特性及其与土壤性质的关系. 福建农业学报, 2015, 30(7): 679-684.

CHEN Y Z, WANG F, YOU Z M, ZHANG W J, WENG B Q. Mineralization characteristics of nitrogen and its relationship with soil properties in different types of tea plantations. Fujian Journal of Agricultural Sciences, 2015, 30(7): 679-684. (in Chinese)

[34] MICHALZIK B, KALBITZ K, PARK J H, SOLINGER S, MATZNER E. Fluxes and concentrations of dissolved organic carbon and nitrogen-a synthesis for temperate forests. Biogeochemistry, 2001, 52(2): 173-205.

[35] KAISER K, GUGGENBERGER G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 2000, 31(7): 711-725.

[36] 王桂跃, 苏婷, 韩海亮, 谭禾平, 包斐, 赵福成. 长期施肥对水田和旱地土壤微生物群落结构、活性碳氮及酶活性的影响. 浙江农业学报, 2018, 30(5): 817-824.

WANG G Y, SU T, HAN H L, TAN H P, BAO F, ZHAO F C. Effects of long-term fertilization on microbial community structure, activated carbon and nitrogen and enzyme activities in paddy field and upland soil. Acta Agriculturae Zhejiangensis, 2018, 30(5): 817-824. (in Chinese)

[37] LUNDQUIST E J, JACKSON L E, SCOW K M, HSU C. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biology & Biochemistry, 1999, 31(2): 221-236.

[38] LUNDQUIST E J, JACKSON L E, SCOW K M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biology and Biochemistry, 1999, 31: 1031-1038.

[39] 尧水红. 干湿交替强度对旱地土壤结构形成及水稻秸秆分解过程的相互作用的影响[D]. 南京: 南京农业大学, 2005.

YAO S H. Effects of alternate intensities of dry and wet on the formation of soil structure in upland and the interaction of straw decomposition in rice[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)

[40] 李廷强, 杨肖娥. 土壤中水溶性有机质及其对重金属化学与生物行为的影响. 应用生态学报, 2004(6): 1083-1087.

LI T Q, YANG X E. Water-soluble organic matter in soil and its effect on chemical and biological behavior of heavy metals. Chinese Journal of Applied Ecology, 2004(6): 1083-1087. (in Chinese)

[41] TIPPING E, HURLEY M A.A model of solid-solution interactions in acid organic soils, based on the complexation properties of humic substances. European Journal of Soil Science, 1988, 39(4): 505-519.

[42] TIPPING E, WOOF C. Humic substances in acid organic soils: modelling their release to the soil solution in terms of humic charge. European Journal of Soil Science, 1990, 41(4): 573-586.

[43] KAISER K, KAUPENJOHANN M. Salts and acids as determinants of the solution composition of acidic forest soils-Anion effects. Journal of Plant Nutrition and Soil Science, 1998, 161: 105-120.

[44] ERICH M S, TRUSTY G M. Chemical characterization of dissolved organic matter released by limed and unlimed forest soil horizons. Canadian Journal of Soil Science, 1997, 77(3): 405-413.

[45] CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry, 1998, 30(1): 57-64.

[46] 孙凤霞, 张伟华, 徐明岗, 张文菊, 李兆强, 张敬业. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响. 应用生态学报, 2010, 21(11): 2792-2798.

SUN F X, ZHANG W H, XU M G, ZHANG W J, LI Z Q, ZHANG J Y. Effects of long-term fertilization on microbial biomass carbon and nitrogen and microbial carbon source utilization in red soil. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798. (in Chinese)

A Meta-analysis of Long-term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland

LI YaLin1, ZHANG XuBo2, REN FengLing1, SUN Nan1, XU Meng2, XU MingGang1

(1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081; 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/Key Laboratory of Ecosystem Network Observation and Modeling, Beijing 100101)

Abstract:【Objective】The objectives of this study were to assess the influence of long-term fertilization on the soil dissolved organic carbon (DOC) as well as soil dissolved organic nitrogen (DON) under various use types, cropping systems and soil pH, to give management guidance on how to increase soil carbon and nitrogen in Chinese Cropland. 【Method】In current study, 72 literatures including effects of long-term fertilization on the contents of DOC and DON in Chinese Cropland from 2000 to 2019 were selected (510 dataset for DOC and 208 dataset for DON). The meta-analysis was used to investigate how the magnitude of the DOC and DON contents response to mineral fertilizer and manure application at three aspects: use types, cropping systems and soil pH.【Result】At national scale, the contents of DOC and DON in the fertilized soils were significantly higher than those in the no fertilized soils (CK). The increments of DOC and DON contents in manure applied soils (60%和93%) were 4.6 and 3.2 times higher than those in the soils with mineral fertilizers (13% and 29%). Under different use types, fertilizer application can significantly increase the contents of DOC and DON in upland soil, and the increments of DOC and DON contents improved by manure in upland soil were higher than those in upland-paddy soil. Furthermore, manure application could increase the content of DOC in mono-cropping (85%) compared with no fertilizer (CK), which was significantly higher than that in double-cropping (38%). For the alkaline soils (pH>7.5), the increments of DOC and DON contents in the treatment with manure amendment (85% and 162%) were higher than those in the neutral (6.5<pH<7.5, 48% and 70%) and acidic soils (pH<6.5, 32% and 61%) compared with no fertilizer (CK), respectively. 【Conclusion】In summary, the application of manure (only manure or combined with mineral fertilizer) could significantly increase the contents of DOC and DON, but the effects varied greatly across various use types, cropping systems, soil pH. Therefore, the appropriate conditions of soil and environment should be taken into account when applying manure.

Key words: long-term fertilization; soil dissolved organic carbon; soil dissolved organic nitrogen; use types; cropping systems; soil pH; Meta-analysis

收稿日期:2019-06-11;

接受日期:2019-08-05

基金项目:国家重点研发计划(2017YFC0503805)、国家自然科学基金(41701333、41620104006)、中央级公益性科研院所基本科研业务费专项(Y2017LM06)

联系方式:李亚林,Tel:15238579116;E-mail:henanyalin@163.com。通信作者张旭博,Tel:15210464308;E-mail:zhangxb@igsnrr.ac.cn。通信作者孙楠,Tel:010-82105062;E-mail:sunnan@caas.cn

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

(责任编辑 李云霞)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-11-24 18:55

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表