奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 345|回复: 0

不同基因型花生耐荫性评价及其鉴定指标的筛选

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-14 13:01:16 | 显示全部楼层 |阅读模式
扫码加微信
不同基因型花生耐荫性评价及其鉴定指标的筛选
胡廷会,成良强,王军,吕建伟,饶庆琳

(贵州省农业科学院油料研究所,贵阳 550006)

摘要:【目的】分析不同基因型花生耐荫性,筛选耐荫鉴定指标,建立耐荫评价模型,为花生耐荫资源筛选和品种选育提供理论支撑。【方法】采用田间试验,以30个花生品种(系)和1个玉米品种为试验材料,设计玉米间作花生和净作花生,在花生结荚期测定花生叶片净光合速率(X13)、气孔导度(X14)、胞间CO2浓度(X15)和蒸腾速率(X16);成熟期测定主茎高(X1)、侧枝长(X2)、总分枝数(X3)、有效分枝数(X4),单株结果数(X5)、单株饱果数(X6)和单株产量(X11);收获晾晒干后测定其百果重(X7)、百果仁重(X8)、百仁重(X9)、出仁率(X10)和小区产量(X12)。根据间作遮荫和净作条件下的各单项指标的耐荫系数,采用主成分分析、聚类分析、逐步回归分析和隶属函数法等多元统计分析法,对花生耐荫性进行综合评价。【结果】不同花生品种(系)各单项指标的耐荫系数变异幅度不同,除出仁率外各个单项指标间存在显著或极显著的相关性。通过主成分分析将16个单项指标转换为5个相互独立的综合指标,其贡献率分别为33.860%、26.666%、11.176%、8.471%和6.954%,代表了全部数据87.127%的信息量。通过隶属函数分析,对于综合指标CI1—CI5,其隶属函数值最大的分别是6-2、天府29号、201150118A、201240413和闽花6号。对耐荫综合评价值(D)进行聚类分析,将30个花生品种(系)划分为3类,第一类属于耐荫型,包含11个品种(系),第二类属于中度耐荫型,包含18个品种(系),第三类属于敏感型,包含1个品种(系)。通过逐步回归分析建立花生耐荫性评价最优数学模型,D=-0.741+0.576X9+0.507X11+0.298X13+0.272X12+0.406X10(R2=0.990),估计精度在93.18%以上,筛选出5个鉴定花生耐荫性指标,分别为百仁重、出仁率、单株产量、小区产量和净光合速率。对参试材料耐荫类别特征分析可知,耐荫型花生净光合速率较高,百仁重、单株产量、小区产量和出仁率高,而敏感型百仁重、单株产量、净光合速率、小区产量和出仁率均最低。【结论】采用多元统计分析法对花生耐荫性进行评价分析是较为科学的,30个花生品种(系)被分成3类(耐荫型、中度耐荫型和敏感型);百仁重、出仁率、单株产量、小区产量和净光合速率可作为鉴定花生耐荫性的指标,可在相同条件下测定这5个指标,计算耐荫综合评价值预测花生耐荫性。

关键词:花生;耐荫性;综合评价;多元统计分析;产量

0 引言
【研究意义】花生(Arachis hypogaea L.)是我国主要出口农产品之一,在国民经济中具有重要地位,因其具有矮秆、固氮、投入少且产出高等特点,已逐渐成为贵州等西南山区与幼龄茶园、果园、药园、辣椒和玉米等作物进行间套作的理想先锋作物[1-5]。但是,由于间作套种条件下高秆作物遮荫加上耐荫品种缺乏,不可避免会对花生植株正常生长发育产生影响[6-7]。因此,弄清不同基因型花生的耐荫性,筛选出合理鉴定花生耐荫性的评价指标,不仅对花生耐荫资源筛选、耐荫品种(系)选育以及花生耐荫性提高具有重要意义,而且可有效提高土地资源利用率、优化农业产业结构和增加农民经济收益。【前人研究进展】近年来,关于花生耐荫性的研究已有相关报道。前人研究指出不同生育时期遮荫胁迫对花生生长、产量和品质的影响不尽相同。苗期遮荫对花生产量和品质影响较小[8];花针期遮光花生单株秕果数增加,饱果数减少,植株干物质生产显著降低,产量下降;在结荚期和饱果期遮荫花生含油量降低,蛋白质含量和可溶性总糖含量稍有增加[9];全生育期遮荫花生产量和品质均显著降低,叶片净光合速率降低,生物产量减少[10-11]。不同遮荫程度对花生的影响不同,中度遮荫胁迫下花生会通过增大叶绿体的受光面积、增加基粒数和基粒片层数来提高对光能的捕获和利用能力,但重度弱光胁迫会导致叶绿体基粒发育不完全,基粒片层破损,捕获光能的能力降低[12]。目前,关于花生耐荫性研究大部分集中于遮荫胁迫对花生植株生产、产量、品质以及光合生理等方面。针对植物的耐荫性鉴定科学家们提出了多种评价方法,孙艳等[13]以各单项指标的耐荫系数作为衡量耐荫性的指标,利用主成分分析、回归分析和聚类分析法对菊花耐荫性进行综合评价;梁颖等[14]根据阴天测定的叶绿素含量、净光合速率、叶绿素a/b和比叶重对甘蓝型油菜耐荫性进行鉴定;袁刘正等[15]以综合耐荫系数为指标,对不同玉米自交系耐荫性进行了评价;武晓玲等[16]采用多元统计法对大豆苗期耐荫性进行评价;李春红[17]、赵银月[18]等利用逐步回归分析法筛选出主茎节数、分枝数、节间长度、抗倒性、单株荚数、百粒重和单株粒重可作为大豆耐荫性的鉴定指标。【本研究切入点】目前关于作物耐荫性评价研究较多,而关于花生耐荫性评价及其鉴定指标的研究鲜有报道。不同作物对遮荫胁迫的响应不同,即使同一作物对荫蔽胁迫的响应也因品种(系)、生态环境不同而存在差异[19]。【拟解决的关键问题】本研究拟采用多元统计分析法,以花生形态、叶片光合特性、产量以及产量构成等指标的耐荫系数计算耐荫性综合评价值,对不同基因型花生耐荫性进行评价,建立花生耐荫性数学评价模型,明确花生耐荫性鉴定指标,为花生耐荫资源的鉴定以及耐荫品种的选育提供理论支撑。

1 材料与方法
1.1 试验地概况及试验材料
试验于2017—2018年在贵州省农业科学院油料研究所贵阳试验基地(26°34' N,106°42'E)进行。其海拔高度为1 140 m,土壤类型为黄壤,地势平坦,无灌溉设施,试验地土壤肥力为中等,全氮含量3.17 g·kg-1,碱解氮108.26 mg·kg-1,全磷1.1 g·kg-1,速效磷47.50 mg·kg-1,全钾6.00 g·kg-1,速效钾351 mg·kg-1,有机质36.6 g·kg-1,交换性钙14.9 cmol·kg-1,pH 7.12。

试验供试花生品种(系)为连续多年开展遮荫网试验,并对其主茎高、侧枝长、分枝数、结果枝数、单株产量等进行比较分析,初步筛选出耐荫性不同的30个花生品种(系)(表1)。玉米品种为黔糯868。

1.2 试验设计
试验为裂区设计,将光照设为主区,30个花生品种(系)设为副区。其中光照设遮荫(ZY)和正常光照(CK)2个水平。遮荫按照玉米与花生各种植1行(1﹕1)的比例进行间作(其遮光率在玉米开花期后达到72%—75%),正常光照为净作花生。玉米间作花生和净作花生均为平作,小区行长3 m,4行区,行距为0.6 m,玉米株距为0.15 m,每穴播2粒,留1苗,花生穴距为0.2 m,每穴播种3粒,留2苗。品种(系)间不留过道,随机排列,每个处理重复3次。2017年和2018年分别于4月24日和4月27日播种,9月26日和9月28日收获,收获时按田间实收进行计产。每公顷施用750 kg三元复合肥作基肥,随播种前整地施入土壤中,其他田间管理和病虫草害防治方法与普通大田花生生产一致。

1.3 测定项目和方法
1.3.1 形态指标及产量性状 在花生成熟期每个处理选取具有代表性的10株,测定主茎高(X1)、侧枝长(X2)、总分枝数(X3)、有效分枝数(X4),单株结果数(X5)、单株饱果数(X6)和单株产量(X11);收获晾晒干后分别测定百果重(X7)、百果仁重(X8)、百仁重(X9)、出仁率(X10)和小区产量(X12)。

1.3.2 光合参数测定 在天气晴朗的上午9:30—11:30,采用美国产的Li-6400便携式光合仪,在花生结荚期(2017年8月15—16日,2018年8月19—20日)选择具有代表性的植株,测定冠层上部倒数第3片叶的净光合速率(X13)、气孔导度(X14)、胞间CO2浓度(X15)和蒸腾速率(X16)。

1.4 数据处理与分析
采用Excel 2007软件进行数据输入、整理,采用SPSS 20.0软件进行方差分析、主成分分析、聚类分析和逐步回归等分析。

计算各单项指标的耐荫系数(shade tolerance coefficient):RVS=遮荫处理下性状值/净作处理性状值、各综合指标的隶属函数值u(Xj)=(Xj-Xmin)/(Xmax-Xmin)、权重width=60.85,height=28.75、综合耐荫评价值width=79.3,height=28.35。式中,j=1,2,3,…,n,Xmin表示第j个综合指标的最小值,Xmax表示第j个综合指标的最大值,Xj表示第j个综合指标。wj表示第j个综合指标在所有综合指标中所占的权重;pj为各花生品种(系)第j个综合指标的贡献率。D值为各基因型花生在遮荫条件下耐荫性综合评价值。

2 结果
2.1 不同基因型花生各单项指标的耐荫系数及其相关性分析
采用2年的平均值,对30个花生品种(系)16个单项指标的耐荫系数进行计算分析(表2)可知,在各指标中,蒸腾速率和单株饱果数的变异系数大,分别为40.84%和36.56%,说明遮荫处理对蒸腾速率和单株饱果数的影响大;其次为单株结果数、百果重、百果仁重、单株产量、小区产量、净光合速率、气孔导度和胞间CO2浓度,其变异系数为22.38%—33.71%,说明遮荫胁迫对花生单株结果数、百果重、百果仁重、单株产量、小区产量、净光合速率、气孔导度和胞间CO2浓度的影响较大。不同花生品种(系)各指标的耐荫系数表现各异,遮荫条件下其主茎高、气孔导度、胞间CO2浓度和蒸腾速率总体上较正常光照有所上升(RVS>1),有效分枝数、单株结果数、单株饱果数、百果重、百果仁重、百仁重、出仁率、单株产量和小区产量与对照相比有所下降(RVS<1),而侧枝长、总分枝数和净光合速率则表现出种质差异,有的上升(RVS>1),有的下降(RVS<1)。可见,不同花生材料各单项指标的变异幅度不同,因此,难以采用单一指标的耐荫系数来判断花生种质的耐荫性。

表1 参试材料信息

Table 1 Peanut materials used in the study


表2 花生各单项指标的耐荫系数

Table 2 Shading tolerance coefficient of each single index of peanut


X1:主茎高;X2:侧枝长;X3:总分枝数;X4:有效分枝数;X5:单株结果数;X6:单株饱果数;X7:百果重;X8:百果仁重;X9:百仁重;X10:出仁率;X11:单株产量;X12:小区产量;X13:净光合速率;X14:气孔导度;X15:胞间CO2浓度;X16:蒸腾速率。下同

X1: Main stem height; X2: Side branch length; X3: Total branch number; X4: Effective branch number; X5: Plant pod number; X6: Mature pods per plant number; X7: 100-pod weight; X8: Kernel weight of 100-pot; X9: 100-kernel weight; X10: Shelling percentage; X11: Plant yield; X12: Plot yield; X13: Net photosynthetic rate; X14: Stomatal conductance; X15: Intercellular CO2 concentration; X16: Transpiration rate. The same as below

对16个单项指标进行相关性分析,获得相关系数矩阵(表3),除出仁率外,其他各个单项指标间均存在一定的相关性,其中,单株饱果数与9个指标存在显著或极显著相关性,单株结果数与8个指标存在显著或极显著相关性。由于各单项指标耐荫系数间或多或少存在一定相关性,不可避免使得各个单项指标所提供的信息会发生重叠,表明花生耐荫性是一个复杂的综合性状。另外,各单项指标在花生耐荫中所起的作用也可能不同,直接利用各单项指标不能直观、准确地评价花生耐荫性。因此,为弥补单项指标耐荫性评价所存在的不足,需在此基础上采用多元统计方法进行综合评价分析。

表3 各单项指标耐荫系数的相关系数矩阵

Table 3 Correlation matrix of shade tolerance coefficient (RVS) of every single index


*,**分别表示在5%和1%水平差异显著 * and ** mean significances at 5% and 1% levels, respectively

2.2 主成分分析
以30个花生品种(系)的16个单项指标耐荫系数为基础进行主成分分析,根据特征值>1的原则,共提取得到5个主成分,并将16个单项指标转换为5个综合指标(CI1—CI5),各主成分的特征向量及贡献率如表4所示。由主成分分析特征值可知,前5个主成分的累计贡献率高达87.127%,具有较强的信息代表性,代表了原始指标所携带的绝大部分信息。其中,第1主成分可反映原始数据信息量的33.860%,代表了5.418个原始指标,包括单株产量、单株饱果数、百果重、百果仁重、百仁重等指标,主要反映花生产量及产量构成因素等特征;第2主成分可反映原始数据信息量的26.666%,代表了4.267个原始指标,包括侧枝长、总分枝数、有效分枝数,单株结果数、净光合速率和气孔导度等指标,主要反映花生的形态和光合特征;第3主成分可反映原始数据信息量的11.176%,代表了1.788个原始指标,包括小区产量和蒸腾速率;第4主成分可反映原始数据信息量的8.471%,代表了1.355个原始指标,起主要贡献的是株高,反映花生形态特性;第5主成分可反映原始数据信息量的6.954%,代表了1.113个原始指标,起主要贡献的是出仁率,主要反映花生荚果饱满程度。

表4 各性状主成分的特征向量及贡献率

Table 4 Eigenvectors and percentage of accumulated contribution of principal components


2.3 耐荫性综合评价
2.3.1 隶属函数分析 对各花生品种(系)综合指标进行隶属函数分析,获得隶属函数值(表5),对于综合指标CI1,主要反映花生产量及其产量构成因素特征,其隶属函数值最大的是6-2,为1.00,最小的是201070407,为0.00,可见在该综合指标下,6-2的耐荫性好,而201070407的耐荫性差;对于综合指标CI2,主要反映花生的形态、光合特性,其中以天府29的隶属函数值最大,201150104的隶属函数值最小,可见在天府29在CI2这一综合指标表现强耐荫性,而耐荫性最差的是201150104。

2.3.2 权重确定 根据各个综合指标贡献率大小,对其权重进行计算(表5)。经计算获得5个综合指标的权重分别为0.389、0.306、0.128、0.097和0.080。

2.3.3 综合评价及分类 对各花生品种(系)的耐荫综合评价值D值进行计算,并根据D值大小对各花生材料耐荫性进行排序(表5)。其中,D值最大的是天府29号,为0.783,说明其耐荫性最强,D值最小的是201070406,为0.221,说明其耐荫性最差。根据D值采用欧式距离法对其进行聚类分析(图1),可将30个不同基因型花生材料划分为3 类,其中,6-2、201150201、天府29号、天府22号、201060106B1、201241001、201240401A、201240413、花育21号、花育33号和徐花9号为第一类,占供试材料的36.67%,其耐荫综合评价值大,属于耐荫型品种(系);花育17号、花育19号、冀花10号、冀花9号、闽花6号、天府18号、徐花13号、远杂6号、中花6号、201060105、201060401C、2010605、201150119、201150104、201150114A、201150118A、201070407、201240404属于第二类,占供试材料的60.00%,其耐荫综合评价值较大,属于中度耐荫型品种(系);201070406属于第三类,占供试材料的3.33%,其耐荫综合评价最小,属于敏感型品种(系)。综上所述,参试的30个花生品种(系)中,有11个属于耐荫品种(系),18个属于中度耐荫品种(系),而敏感型品种(系)较少,只有1个。

表5 各花生品种(系)耐荫性综合评价

Table 5 The comprehensive value of each peanut cultivars


width=315.5,height=371.1
图1 30个花生品种(系)聚类树状图

Fig. 1 The dendrogram of clusters for 30 peanut cultivars (line)

2.4 回归分析及耐荫鉴定指标的选择
为更好的对花生耐荫性进行预测,弄清各个单项指标与耐荫性之间的关系,筛选出鉴定花生耐荫性的重要指标,获得耐荫性评价数学模型,以耐荫性综合评价值(D值)作因变量,各单项指标的耐荫系数为自变量进行逐步回归分析,建立最优回归方程:D=-0.741+0.576X9+0.507X11+0.298X13+0.272X12+0.406X10(R2=0.990,F=483.497,P=0.000),并对其估计精度进行分析可知(表6),各个花生品种(系)的估计精度均在93.18%以上,表明方程中5个指标所代表的百仁重、出仁率、单株产量、小区产量和净光合速率对遮荫条件响应较为明显,可作为花生耐荫性评价指标。因此,可在相同条件下测定其他花生品种(系)的上述5个指标,并求得其耐荫系数,利用该方程计算耐荫性综合评价D值,便可预测其耐荫性。

2.5 各品种(系)耐荫类别的特征分析
结合聚类和逐步回归分析结果,将不同基因型花生在对照和遮荫条件下各主要性状的平均值列于表7中,分析遮荫处理条件下不同耐荫性花生的表现特征:

第一类(耐荫型):净光合速率较高,百仁重、单株产量、小区产量和出仁率高;

第二类(中度耐荫型):百仁重、单株产量、小区产量和出仁率均较高,净光合速率高;

第三类(敏感型):百仁重、单株产量、净光合速率、小区产量和出仁率均最低。

表6 回归方程的估计精度分析

Table 6 Analysis of evaluation accuracy of equation


表7 不同耐荫类型各性状的表现特征

Table 7 Description of different types to shade tolerance


3 讨论
3.1 花生耐荫性评价分析
花生耐荫性是一个十分复杂的综合性状,由其自身遗传性状、生物和非生物等[20]诸多因素共同决定。花生在适当荫蔽胁迫下具有自我调节适应弱光的能力。在间套作复合种植体系中,除了减少高秆作物对花生的遮荫外,选择耐荫性强的花生品种,是解决间作套种环境下花生植株瘦弱、产量低、品质差的有效措施。因此,开展花生耐荫性研究,找到科学合理评价花生耐荫性的方法,对筛选、挖掘适宜间作套种花生资源以及耐荫花生品种的选育具有重要作用。本研究采用玉米与花生(1﹕1)间作对花生进行自然遮荫处理,选择能直观反映花生生长性状的16个容易测定指标,通过对其耐荫系数及其相关性分析发现,不同花生品种(系)各单项指标的耐荫系数变异幅度不同,除出仁率外各个单项指标间存在显著或极显著的相关性,可见各指标间不仅会发生不同程度的重叠,而且各个指标对遮荫环境的响应程度不同。因此,花生的耐荫性不能采用单一指标进行评价,应该对所测指标进行判断分析后再进行综合评价才更加科学有效[21]。

很多学者为弄清作物的耐逆性,利用综合评价法对作物的耐荫性、耐寒性、和耐盐性[16,22-23]等进行评价分析。目前,关于作物的耐荫性研究目前较多的是大豆,科学家们采用综合评价法分别从苗期特性[16]、根系[24]、产量、产量构成因素[17-18]、茎秆木质素含量[25-27]以及茎秆抗倒性[28-29]等方面对大豆耐荫性进行评价研究。本研究采用多元分析方法,通过主成分分析,提取得到5个主成分,其累计贡献率高达87.127%,具有较强的信息代表性,可将16个单项指标转换为5个彼此独立的综合指标;利用隶属函数分析法获得花生的耐荫综合评价D值;对D值进行聚类分析,将30个花生品种(系)分为3种类型,分别为耐荫型、中度耐荫型和敏感型,其中有11个属于耐荫型,占供试材料的36.67%,有18个属于中度耐荫型,占供试材料的60.00%,而敏感型品种(系)较少,只有1个。可见绝大部分花生属于耐荫和中度耐荫型品种(系),少部分属于敏感型品种(系),说明在遮荫环境下,花生会对一定程度的荫蔽胁迫产生适应性,是一种既喜光又耐荫的作物[30]。

3.2 花生耐荫性鉴定指标选择
光是作物获得能量的来源和形态建成的重要环境因子,在遮荫条件下,作物的形态、光合生理、产量[31]以及品质[32]等特性会发生变化,但并不是所有指标都能有效、准确鉴定花生耐荫性,花生的耐荫性因遮荫环境、作物特性和品种差异等而存在不同。因此,建立可靠的花生耐荫评价体系十分必要。本研究利用逐步回归分析方法建立数学模型D= -0.741+0.576X9+0.507X11+0.298X13+0.272X12+0.406X10,分析可知各个花生品种(系)的估计精度均在93.18%以上,可见,该数学模型所筛选出的5个指标(百仁重、出仁率、单株产量、小区产量和净光合速率)对遮荫环境的响应较为明显,可作为鉴定花生耐荫性的指标。遮荫会对花生正常生长产生影响,有研究已表明,荫蔽导致花生净光合速率、产量和成熟饱满度降低[9,33],而在本研究中,净光合速率、单株产量、百仁重和出仁率均被筛选出来,可见这些指标对弱光胁迫较为敏感,可作为鉴定花生耐荫性的指标。

4 结论
将30个花生品种(系)划分为耐荫型花生品种(系)11个、中等耐荫型花生品种(系)18个和敏感型花生品种(系)1个。百仁重、出仁率、单株产量、小区产量和净光合速率可作为鉴定花生品种(系)耐荫性的指标。耐荫型花生在遮荫条件下表现为净光合速率较高,百仁重、单株产量、小区产量和出仁率高。

References

[1] 林洪鑫, 潘晓华, 袁展汽, 肖运萍, 刘仁根, 汪瑞清, 吕丰娟. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响.中国农业科学,2018, 51(17): 3275-3290.

LIN H X, PAN X H, YUAN Z Q, XIAO Y P, LIU R G, WANG R Q, LÜ F J.Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization. Scientia Agricultura Sinica, 2018, 51(17): 3275-3290. (in Chinese)

[2] 焦念元, 宁堂原, 赵春, 侯连涛, 李增嘉, 李友军, 付国占, 韩宾. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响. 作物学报, 2008, 34(4): 706-712.

JIAO N Y, NING T Y, ZHAO C, HOU L T, LI Z J, LI Y J, FU G Z, HAN B. Effects of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system. Acta Agronomica Sinica, 2008, 34(4): 706-712. (in Chinese)

[3] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响.中国农业科学,2017, 50(19): 3702-3713.

GAO Y L, SUN Z X, BAI W, FENG L S, YANG N, CAI Q, FENG C, ZHANG Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Scientia Agricultura Sinica, 2017, 50(19): 3702-3713. (in Chinese)

[4] ZUO Y M, ZHANG F S, LI X L, CAO Y P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil, 2000, 220(12): 13-25.

[5] 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33(14): 4324-4330.

JIAO N Y, NING T Y, YANG M K, FU G Z, YIN F, XU G W, LI Z J. Effects of maize-peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. (in Chinese)

[6] 吴正锋, 刘俊华, 万书波, 孙奎香, 孙学武, 冯昊, 王才斌. 遮光持续时间对花生荚果产量和品质的影响. 山东农业科学, 2011, 2: 30-33.

WU Z F, LIU J H, WAN S B, SUN K X, SUN X W, FENG H, WANG C B. Effect of shading duration on pod yield and quality of peanut. Shandong Agricultural Sciences, 2011, 2: 30-33. (in Chinese)

[7] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22(6): 1477-1484.

JIAO N Y, WANG J T, YIN F, MA C, QI F G, LIU L, FU G Z, LI Y J. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1477-1484. (in Chinese)

[8] 万书波, 郑亚萍, 刘道忠, 成波, 吴正峰, 陈殿绪, 王才斌. 精播麦套花生套期、肥料与密度优化配置. 中国油料作物学报, 2006, 28(3): 319-323.

WAN S B, ZHENG Y P, LIU D Z, CHENG B, WU Z F, CHEN D X, WANG C B. Optimization of peanut-wheat intercropping system on date, fertilizer and plant density. Chinese journal of oil crop sciences, 2006, 28(3): 319-323. (in Chinese)

[9] 张昆, 万勇善, 刘风珍. 遮光对花生产量、成熟饱满度及品质的影响. 中国粮油学报, 2009, 24(11): 92-96.

ZHANG K, WAN Y S, LIU F Z. Effects of shading on yield, plumpness and quality of peanut. Journal of the Chinese Cereals and Oils Association, 2009, 24(11): 92-96. (in Chinese)

[10] 焦念元, 陈明灿, 付国占, 宁堂原, 王黎明, 李增嘉. 玉米花生间作复合群体的光合物质积累与叶面积指数变化. 作物杂志, 2007(1): 34-35.

JIAO N Y, CHEN M C, FU G Z, NING T Y, WANG L M, LI Z J. Studies on photosynthetic product accumulation and leaf area index in a complex population of companion cropping of corn and peanut. Crops, 2007(1): 34-35. (in Chinese)

[11] ZUO Y, ZHANG F. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil. Plant and Soil, 2008, 306(1): 23-36.

[12] 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38(7): 740-748.

WU Z F, SUN X W, WANG C B, ZHENG Y P, WAN S B, LIU J H, ZHENG Y M, WU J X, FENG H , YU T Y. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chinese Journal of Plant Ecology, 2014, 38(7): 740-748. (in Chinese)

[13] 孙艳, 高海顺, 管志勇, 陈素梅, 房伟民, 陈发棣. 菊花近缘种属植物幼苗耐荫特性分析及其评价指标的确定. 生态学报, 2012, 32(6): 1908-1916.

SUN Y, GAO H S, GUAN Z Y, CHEN S M, FANG W M, CHEN F D. Analysis of shade-tolerance and determination of evaluation indicators of shade-tolerance in seedlings of Chrysanthemum grandiflorum and its closely related genera. Acta Ecologica Sinica, 2012, 32(6): 1908-1916. (in Chinese)

[14] 梁颖, 李加纳. 甘蓝型油菜耐荫性的品种差异. 作物学报, 2004, 30(4): 360-364.

LIANG Y, LI J N. The varietal difference of tolerance to low light intensity in rape (Brassica napus L. ) plants. Acta Agronomica Sinica, 2004, 30(4): 360-364. (in Chinese)

[15] 袁刘正, 李潮海, 王秀萍, 杨世坤. 不同玉米自交系耐荫性比较. 玉米科学, 2008, 16(6): 19-23.

YUAN L Z, LI C H, WANG X P, YANG S K. Comparison of shade-tolerance among different maize (Zea mays L. ) inbred lines. Journal of Maize Sciences, 2008, 16(6): 19-23. (in Chinese)

[16] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13): 2497-2507.

WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. (in Chinese)

[17] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47(15): 2927-2939.

LI C H, YAO X D, JU B T, ZHU M Y, WANG H Y, ZHANG H J, AO X, YU C M, XIE P T, SONG S H. Analysis of shade-toleranceand determination of shade-tolerance evaluation indicators in different soybean genotypes. Scientia Agricultura Sinica, 2014, 47(15): 2927-2939. (in Chinese)

[18] 赵银月, 詹和明, 代希茜, 单丹丹, 王铁军. 云南间作大豆耐荫性综合评价及鉴定指标筛选. 中国油料作物学报, 2019, 41(1): 81-91.

ZHAO Y Y, ZHAN H M, DAI X X, SHAN D D, WANG T J. Comprehensive evaluation and screening identification index of shade tolerance of intercropping soybean. Chinese Journal of Oil Crop Sciences, 2019, 41(1): 81-91. (in Chinese)

[19] 孙祖东, 张志鹏, 蔡昭艳, 曾维英, 赖振光, 陈怀珠, 杨守臻, 唐向民, 苏燕竹, 盖钧镒. 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异. 中国农业科学, 2017, 50(5): 792-801.

SUN Z D, ZHANG Z P, CAI Z Y, ZENG W Y, LAI Z G, CHEN H Z, YANG S Z, TANG X M, SU Y Z, GAI J Y. Establishment of an evaluation system of shade tolerance in soybean and its variation in southern China germplasm population. Scientia Agricultura Sinica, 2017, 50(5): 792-801. (in Chinese)

[20] 殷东生, 沈海龙. 森林植物耐荫性及其形态和生理适应性研究进展. 应用生态学报, 2016, 27(8): 2687-2698.

YIN D S, SHEN H L. Shade tolerance and the adaptability of forest plants in morphology and physiology: A review. Chinese Journal of Applied Ecology, 2016, 27( 8) : 2687-2698. (in Chinese)

[21] 孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗. 谷子抗旱相关性状的主成分与模糊聚类分析. 中国农业科学, 2009, 42(8): 2667-2675.

MENG Q L, GUAN Z B, FENG B L, CHAI Y, HU Y G. Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet (Setaria italica). Scientia Agricultura Sinica, 2009, 42(8): 2667-2675. (in Chinese)

[22] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47(7): 1290-1300.

Dai H F, Wu H, AMANGULI M, Wang L H, Maimaiti A, Zhang J S. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300. (in Chinese)

[23] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳·肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45(9): 1703-1713.

WU H, HOU L L, ZHOU Y F, FAN Z C, SHI J Y, ALlYAN R, ZHANG J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713. (in Chinese)

[24] 杨才琼, 胡宝予, 吴海军, 秦雯婷, 张潇文, 刘卫国, 杨文钰, 刘江. 黑豆种质苗期耐荫性评价及其根系对弱光胁迫的响应. 中国生态农业学报, 2017, 25(6): 893-902.

YANG C Q, HU B Y, WU H J, QIN W T, ZHANG X W, LIU W G, YANG W Y, LIU J. Evaluation for shade tolerance of black soybean germplasms and their root structure response to shade stress at seedling stage. Chinese Journal of Eco-Agriculture, 2017, 25(6): 893-902. (in Chinese)

[25] LIU W G, REN M L, LIU T, DU Y L, ZHOU T, LIU X M, LIU J, HUSSAIN S, YANG W Y. Effect of shade stress on lignin biosynthesis in soybean stems. Journal of Integrative Agriculture, 2018, 17(7): 1594-1604.

[26] LIU W G, SAJAD H, LIU T, ZOU J L, REN M L, ZHOU T, LIU J, YANGF, YANG W Y. Shade stress decreases stem strength of soybean through restraining lignin biosynthesis.Journal of Integrative Agriculture, 2017, 18(1): 43-53.

[27] LIU W G, JIANG T, ZHOU X R, YANG W Y. Characterisitics of expansions in soybean (Glycine max) internodes and responses to shade stress. Asian Journal of Crop Science, 2011, 3(1): 26-34.

[28] 刘婷, 刘卫国, 任梦露, 杜勇利, 邓榆川, 邹俊林, 方萍, 杨文钰. 遮荫程度对不同耐荫性大豆品种光合及抗倒程度的影响. 中国农业科学, 2016, 49(8): 1466-1475.

LIU T, LIU W G, REN M L, DU Y L, DENG Y C, ZOU J L, FANG P, YANG W Y. Effects of shade degrees on photosynthesis and lodging resistance degree of different shade tolerance soybean. Scientia Agricultura Sinica, 2016, 49(8): 1466-1475. (in Chinese)

[29] 罗玲, 于晓波, 万燕, 蒋涛, 杜俊波, 邹俊林, 杨文钰, 刘卫国. 套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系. 中国农业科学, 2015, 48(13): 2528-2537.

LUO L, YU X B, WAN Y, JIANG T, DU J B, ZOU J L, YANG W Y, LIU W G. The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage. Scientia Agricultura Sinica, 2015, 48(13): 2528-2537. (in Chinese)

[30] 王在序, 盖树人. 山东花生. 上海: 上海科学技术出版社, 1999: 252-271.

WANG Z X, GAI S R. Shandong peanut. Shanghai: Shanghai science and technology press, 1999: 252-271. (in Chinese)

[31] 贾士芳, 李从锋, 董树亭, 张吉旺. 花后不同时期遮光对玉米粒重及品质影响的细胞学研究. 中国农业科学, 2010, 43(5): 911-921.

JIA S F, LI C F, DONG S T, ZhANG J W. Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Scientia Agricultura Sinica, 2010, 43(5): 911-921. (in Chinese)

[32] 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6): 1066-1077.

CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia Sinensis (L.) O. Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese)

[33] 张昆, 万勇善, 刘风珍. 苗期弱光对花生光合特性的影响. 中国农业科学, 2010, 43(1): 65-71.

ZHANG K, WAN Y S, LIU F Z. Effects of weak light on photosynthetic characteristics of peanut seedlings. Scientia Agricultura Sinica, 2010, 43(1): 65-71. (in Chinese)

Evaluation of shade tolerance of peanut with different genotypes and screening of identification indexes

HU Tinghui, CHENG LiangQiang, WANG Jun, LÜ JianWei, RAO QingLin

(Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006)

Abstract: 【Objective】The main aim of this study was to explore the methods of evaluating shade-tolerance, analyze the shade-tolerance of peanut in different genotypes, screen suitable identification indexes of shade tolerance, and establish an evaluation model of shade tolerance, so as to provide some theoretical support for screening of shade-tolerance resources and variety breeding of peanut. 【Method】Qiannuo 868 was selected as the corn variety, and under the conditions of corn-peanut intercropping system and net cropping peanut, thirty peanut cultivars (lines) were treated in the field experiment. Net photosynthetic rate (X13), stomatal conductance (X14), intercellular CO2 concentration (X15) and transpiration rate (X16) of peanut leaves were measured at the pod stage of peanut. The main stem height (X1), side branch length (X2), total branch number (X3), effective branch number (X4), plant pod number (X5), mature pods per plant number (X6) and yield per plant (X11) were measured in the peanut mature stage. The 100-pod weight (X7), kernel weight of 100 fruiting (X8), 100-kernel weight (X9), shelling percentage (X10) and plot yield (X12) were measured after harvesting and drying of peanut seed. 【Result】The variation range of shade tolerance coefficient of each single index was different in different peanut varieties (lines). The 16 single indicators were converted into 5 independent comprehensive indicators through principal component analysis, and their contribution rates respectively were 33.860%, 26.666%, 11.176%, 8.471% and 6.954%, representing the information of 87.127% of all data. Through membership function, the largest membership function values of comprehensive indexes CI1-CI5 respectively were 6-2, Tianfu 29, 201150118A, 201240413 and Minhua 6. The thirty peanut varieties (lines) were divided into 3 categories: the first category was shade tolerance type, including 11 varieties (lines); the second category was moderate shade tolerance type, including 18 varieties (lines); the third category was sensitive type, including 1 variety (line). The optimal mathematical model of peanut shade tolerance evaluation was established, namely D=0.741+0.576X9+0.507X11+ 0.298X13+0.272X12+0.406X10 (R2=0.990), and its accuracy was higher than 93.18%. Then, 5 indexes for peanut shade tolerance identification were selected: 100-kernel weight, yield per plant, net photosynthetic rate, plot yield and the ratio of shelled. The shade tolerance type peanut had a higher net photosynthetic rate, higher 100-kernel weight, yield per plant, plot yield and shelling percentage, while the sensitive type peanut were the opposite. 【Conclusion】 It was relatively scientific to evaluate and analyze the shade tolerance of peanut by multivariate statistical analysis. 30 peanut varieties (lines) were divided into three categories: shade tolerance type, moderate shade tolerance type, and sensitive type. 100-kernel weight, shelling percentage, yield per plant, plot yield and net photosynthetic rate could be used as the indexes to identify the shade tolerance of peanut. The comprehensive evaluation value of shade tolerance could be calculated to predict peanut shade tolerance by measuring the five indexes under the same conditions.

Key words: peanut; shade-tolerance; comprehensive evaluation; multivariate statistical analysis; yield

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

(责任编辑 杨鑫浩)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-11-24 18:40

Powered by openhelp100 X3.5

Copyright © 2001-2024 5u.studio.

快速回复 返回顶部 返回列表