·导读· 黄瓜重要农艺性状的分子生物学黄瓜重要农艺性状的分子生物学张圣平,顾兴芳 (中国农业科学院蔬菜花卉研究所/农业农村部园艺作物生物学与种质创制重点实验室,北京 100081) 黄瓜是我国的重要蔬菜作物,尤其在设施生产中占有举足轻重的地位,2017年收获面积为123.52万hm2,产量达到6 482.46万t[1]。丰产优质多抗新品种是黄瓜绿色高效生产的重要保障,而优良新品种的选育离不开准确高效的育种技术。重要农艺性状分子生物学研究,如遗传图谱构建、分子标记开发、优异基因挖掘、功能基因组研究等,是高通量高效率分子设计育种技术研发的基础。由于黄瓜遗传背景狭窄,在全基因组序列信息破译之前,相关分子生物学研究进展缓慢。 2009年,黄瓜全基因组测序完成,数据量达到17.2 G,测序深度72.2×,注释了26 682个基因[2],使黄瓜成为第一个以二代测序技术为主完成测序的植物,也是世界上第一个完成测序的蔬菜作物,开启了黄瓜分子生物学和遗传育种快速发展的新时期。10年来,基于黄瓜基因组测序的带动和功能基因组学的迅速发展,在黄瓜研究上凝聚了一批研究人员、谋划了一批科研项目、取得了一批研究成果,特别是在高密度遗传图谱构建、高质量分子标记开发、重要农艺性状基因挖掘、基因调控网络解析等方面取得了较大进展,发表了影响因子大于6的SCI论文25篇,其中影响因子大于8的高水平论文12篇,申请国内外专利超过200件,创建了高效的分子标记聚合育种技术,实现了育种技术的更新换代,国内2项成果“黄瓜基因组和重要农艺性状基因研究”和“黄瓜优质多抗种质资源创制与新品种选育”荣获国家级奖励。 在我国完成华北密刺型黄瓜9930的全基因组测序之后,美国完成了加工型黄瓜GY14的全基因组测序[3]。最近中国农业科学院蔬菜花卉研究所的科研人员进一步组装完成了9930黄瓜V3.0参考基因组,利用10×genomics技术平台和Hi-C测序数据,组装获得了总长度226.2 Mb,共包含174 contigs的参考基因组,包含1 374个全长末端逆转录转座子和1 078个新基因,可以更好的服务于黄瓜遗传研究[4]。以9930基因组为参考,通过对115份黄瓜核心种质进行深度重测序,构建了包含360多万个位点的全基因组遗传变异图谱,为全面了解黄瓜进化及多样性提供了新思路,并为全基因组设计育种奠定了良好基础[5]。 高等职业院校的信息和数据是进行教育改革和教学创新的基础,而多维度、海量的信息和数据必须要有规范的收集、加工和开发平台,这样才能更好地开发各类信息和资源的深层次价值,做到对高等职业院校教育教学变革的全面支持。当前高等职业院校应该做好基于大数据技术的信息和数据资源库建设,具体的策略有: 黄瓜高密度遗传图谱构建方面,第一张整合的高密度遗传图谱于2012年完成,使得定位在图谱上的标记位点达到1 369个[6]。随后利用永久群体重组自交系(RILs)结合基因组测序,构建了包含1 681个标记的分子连锁图谱[7]。为重要农艺性状基因定位提供了有力的工具。 对于In元素,如图4所示,丰度最高(95.70%)的同位素115In质谱线和115Sn相重叠,即便在高分辨(R>10 000)下也无法完全分开,而Sn作为高纯锡的基体元素,其115Sn质谱线的强度非常大,对115In质谱线的干扰就不言而喻了。所以最终选择丰度次高(4.30%)的113In作为分析线。 黄瓜抗病性状分子生物学研究方面,将抗黑星病基因Ccu精细定位在Chr.2上0.29 cM的区域内,获得6个候选基因[8];将抗西葫芦黄化花叶病毒基因zymv精细定位于Chr.6上50 kb的区段内[9];将枯萎病抗病主效QTL定位在Chr.2上2.4 cM内[10];检测到PI197088黄瓜的11个与霜霉病抗性相关的QTL,4个与白粉病抗性相关的QTL[11];检测到TH118FLM黄瓜5个与霜霉病抗性相关的QTL[12];检测到PI183967黄瓜5个与茎部蔓枯病抗性相关的QTL[13];在Chr.5上检测到抗角斑病QTL位点psl5.1和psl5.2[14]。图位克隆了GY14黄瓜抗炭疽病候选基因,该基因属于STAYGREEN家族的植物抗病基因[15]。黄瓜STAYGREEN的感病丢失突变带来了永久广谱抗病性,为黄瓜抗病育种起到了重要作用,支撑了美国黄瓜产业的发展[16]。 黄瓜果实品质性状分子生物学研究方面,图位克隆了短果基因SF1[17]、小叶基因LL[18]、圆形叶片基因CsPID[19]、软刺基因ts[20]、果瘤基因Tu[21]、超高密度果刺新位点fsd6.1[22],其中SF1泛素化修饰并降解自身及其底物ACS2,进而影响乙烯含量变化;LL编码WD40重复蛋白并且与黄瓜器官大小的发育密切相关;CsPID编码丝氨酸/苏氨酸蛋白激酶。检测到了8个与果实大小相关的QTL[23];CsERF025可以增强果实中乙烯的含量,进而导致果实发生弯曲[24];APRR2、TKN4和TKN2三个基因通过相互作用共同调节叶绿素含量的积累,从而影响嫩瓜果皮颜色[25];将多效应黑刺基因B精细定位于Chr.4上50 kb的区段内,获得候选基因R2R3-MYB转录因子[26];将心皮数基因CsCLAVATA3精细定位在Chr.1上[27],将果实多刺基因ns精细定位在Chr.2上[28],将黄绿叶色基因v-1精细定位在Chr.6上50.9 kb内[29]。 黄瓜植株形态建成相关性状分子生物学研究方面,解析了分枝、花打顶等株型调控机制,CsBRC1是控制分枝的关键基因,通过抑制生长素运输基因PIN3,导致侧枝中生长素过量积累,从而抑制侧枝的生长发育[30]。克隆了控制有限生长的关键基因CsTFL1,该基因通过与CsNOT2a互作来影响花发育[31]。在性别表达和开花时间研究上,将雄性不育基因精细定位到了76 kb区间,获得候选基因Csa3M006660[32];检测到3个调控开花时间的QTL,其中FT6.2是主效QTL[33]。 基因调控网络解析方面,明确了黄瓜苦味代谢和进化源于两个主转录因子直接调控的一个9基因模块[34];CsMYB6-CsTRY复合体调控果刺的其实发育[35];CsTu-TS1复合体调控果瘤的形成[36];CsSPL在转录因子HD-ZIPIII和CsWUS 之间具有调配器的功能,从而调控花粉和胚珠的发育[38];鉴定到一个控制果实长度的关键基因CsFUL1,该基因通过抑制生长素运输基因CsPIN1和CsPIN7的表达进而减少生长素积累[38]。 本专题所汇集的5篇论文,分别在黄瓜植株形态建成、雌花及果实发育、抗白粉病机制等方面取得了新进展。在黄瓜Chr.1、Chr.2、Chr.3、Chr.4、Chr.5、Chr.6上,检测到8个与下胚轴长度密切关联的SNP位点,挖掘到8个调控下胚轴长度的候选基因[39]。从9930基因组中鉴定得到138个ERF基因家族成员,其中部分成员在不同性型材料中差异表达,可能参与雌花分化初期的基因表达调控[40]。克隆得到果实发育调控网络中,参与胎座框的形成的重要基因CsRPL,拟南芥异源过表达CsRPL1/2转基因植株的果荚变短,花粉育性降低,且种子发育受到抑制[41]。分别在Chr.1、Chr.3、Chr.6上检测到4个单性结实QTL,挖掘到4个与单性结实性状相关的候选基因[42]。筛选获得了抗白粉病新材料,在成熟期叶片的防御信号途径相关基因表达上,抗病材料的表达高于感病材料[43]。这些仅仅是黄瓜重要农艺性状分子生物学研究领域中的一小部分内容,谨希望以专题的形式呈现,促进该学科领域的快速发展。 冯一余到单位上班,跟同事说,不行了,不行了,我要得焦虑症了。同事都笑,说,现在谁不得焦虑症才是怪物呢。后来就聊到了停车,有个老张说,哎,现在新花样真是层出不穷哎,有人因为抢不到车位,竟出钱雇人看守。冯一余说,是你们家小区吗?那老张说,不是我们家,我是从网上看来的。冯一余也到网上看了一下,果然有这样的事。 References [2] HUANG S W, LI R Q, ZHANG Z H, LI L, GU X F, FAN W, LUCAS W J, WANG X W, XIE B Y, NI P X, REN Y Y, ZHU H M, LI J, LIN K, JIN W W, FEI Z J, LI G C, STAUB J E, KILIAN A, VAN DER VOSSEN E A G, et al. The genome of the cucumber, Cucumis sativus L. Nature genetics, 2009, 41: 1275-1281. [3] YANG L M, KOO D H, LI Y H, ZHANG X J, LUAN F S, HAVEY M, JIANG J M, WENG Y Q. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant Journal, 2012, 71(6): 895-906. [4] LI Q, LI H B, HUANG W, XU Y C, ZHOU Q, WANG S H, RUAN J, HUANG S W, ZHANG Z H. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.).GigaScience, 2019, 8: 1-10. [5] QI J J, LIU X, SHEN D, MIAO H, XIE B Y, LI X X, ZENG P, WANG S H, SHANG Y, GU X F, DU Y C, LI Y, LIN T, YUAN J H, YANG X Y, CHEN J F, CHEN H M, XIONG X Y, HUANG K, FEI Z J, MAO L Y, TIAN L, STÄDLER T, RENNER S S, KAMOUN S, LUCAS W J, ZHANG Z H, HUANG S W. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature genetics, 2013, 45: 1510 [6] ZHANG W W, PAN J S, HE H L, ZHANG C, LI Z, ZHAO J L, YUAN X J, ZHU L H, HUANG S W, CAI R. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.).Theoretical and Applied Genetics, 2012, 124(2): 249-259. [7] ZHOU Q, MIAO H, LI S, ZHANG S P, WANG Y, ZHANG Z H, HUANG S W, GU X F. A sequencing-based linkage map enables precise localization of Mendelian genes and quantitative trait loci in cucumber. Molecular Plant, 2015, 8(6): 961-963. [8] KANG H X, WENG Y Q, YANG Y H, ZHANG Z H, ZHANG S P, MAO Z C, CHENG G H, GU X F, HUANG S W, XIE B Y. Fine genetic mapping localizes cucumber scab resistance gene Ccu into anR gene cluster. Theoretical and Applied Genetics, 2010, 122: 795-803. [9] AMANO M, MOCHIZUKI A, KAWAGOE Y, IWAHORI K, NIWA K, SVOBODA T, MAEDA T, IMURA Y. High-resolution mapping of zym, a recessive gene for zucchini yellow mosaic virus resistance in cucumber. Theoretical and Applied Genetics, 2013, 126(12): 2983-2993. [10] ZHANG S P, MIAO H, YANG Y H, XIE B Y, WANG Y, GU X F. A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Molecular Breeding, 2014, 34(4): 1805-1815. [11] WANG Y H, VANDENLANGENBERG K, WEN C L, WEHNER T C, WENG Y Q. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping‑by‑sequencing in RIL population. Theoretical and Applied Genetics, 2018, 131(3): 597-611. [12] WIN K T, VEGAS J, ZHANG C Y, SONG K, LEE S. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods.Theoretical and Applied Genetics, 2017, 130: 199-211. [13] Zhang S P, Liu S L, Miao H, Shi Y X, Wang M, Wang Y, Li B J, Gu X F. Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem. Molecular Breeding, 2017, 37(4): 49. [14] SŁOMNICKA R, OLCZAK-WOLTMAN H, KORZENIEWSKA A, GOZDOWSKI D, NIEMIROWICZ-SZCZYTT K, BARTOSZEWSKI G. Genetic mapping of psl locus and quantitative trait loci for angular leaf spot resistance in cucumber. Molecular Breeding, 2018, 38: 111. [15] PAN J S, TAN J Y, WANG Y H, ZHENG X Y, OWENS K, LI D W, LI Y H, WENG Y Q. STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theoretical and Applied Genetics,2018, 131(7): 1577-1587. [16] WANG Y H, TAN J Y, WU Z M, VANDENLANGENBERG K, WEHNER T C, WEN C L, ZHENG X Y, OWENS K, THORNTON A, BANG H H, HOEFT E, KRAAN P A G, SUELMANN J, PAN J S, WENG Y Q. STAYGREEN, STAY HEALTHY: A loss-of- susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytologist,2019, 221(1): 415-430. [17] XIN T X, ZHANG Z, LI S, ZHANG S, LI Q, ZHANG Z H, HUANG S W, YANG X Y. Genetic regulation of ethylene dosage for cucumber fruit elongation. The Plant Cell, 2019, 31: 1063-1076. [18] YANG L M, LIU H Q, ZHAO J Y, PAN Y P, CHENG S Y, LIETZOW C D, WEN C L, ZHANG X L, WENG Y Q. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. The Plant Journal, 2018, 95: 834-847. [19] ZHANG C W, CHEN F F, ZHAO Z Y, HU L L, LIU H Q, CHENG Z H, WENG Y Q, CHEN P, LI Y H. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics,2018, 131(6): 1379-1389. [20] GUO C L, YANG X Q, Wang Y L, NIE J T, YANG Y, SUN J X, DU H, ZHU W Y, PAN J, CHEN Y, LV D, HE H L, LIAN H L, PAN J S, CAI R. Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus. Theoretical and Applied Genetics, 2018, 131: 1-12. [21] YANG X Q, ZHANG W W, HE H L, NIE J T, BIE B B, ZHAO J L, REN G L, LI Y, ZHANG D B, PAN J S, CAI R. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal, 2014, 78: 1034-1046. [22] BO K L, MIAO H, WANG M, XIE X X, SONG Z C, XIE Q, SHI L X, WANG W P, WEI S, ZHANG S P, GU X F. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics, 2019, 132(1): 27-40. [23] Pan Y P, Qu S P, Bo K L, Gao M L, Haider K R, Weng Y Q. QTL mapping of domestication and diversifying selection related traits in round‑fruited semi‑wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 2017, 130: 1531-1548. [24] WANG C H, XIN M, ZHOU X Y, LIU C H, LI S G, LIU D, XU Y, QIN Z W. The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Molecular Biology, 2017, 95: 519-531. [25] JIAO J Q, LIU H Q, LIU J, CUI M M, XU J, MENG H W, LI Y H, CHEN S X, CHENG Z H. Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber (Cucumis sativus L.). Plant growth regulation, 2017, 83: 233-243. [26] LI Y H, WEN C L, WENG Y Q. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theoretical and Applied Genetics, 2013, 126(8): 2187-2196. [27] LI S, PAN Y P, WEN C L, LI Y H, LIU X F, ZHANG X L, BEHERA T K, XING G M, WENG Y Q. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theoretical and Applied Genetics, 2016, 129(5): 1007-1022. [28] XIE Q, LIU P N, SHI L X, MIAO H, BO K L, WANG Y, GU X F, ZHANG S P. Combined fine mapping, genetic diversity and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theoretical and Applied Genetics, 2018, 131(6): 1-14. [29] MIAO H, ZHANG S P, WANG M, WANG Y, WENG Y Q, GU X F. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.). International Journal of Molecular Sciences, 2016(17): 1602. [30] SHEN J J, ZHANG Y Q, GE D F, WANG Z Y, SONGA W Y, GUA R, CHE G, CHENG Z H, LIU R Y, ZHANG X L. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber.Proceedings of the National Academy of Sciences of the USA, 2019, 116(34): 17105-17114. [31] WEN C L, ZHAO W S, LIU W L, YANG L M, WANG Y H, LIU X W, XU Y, REN H Z, GUO Y D, LI C, LI J G, WENG Y Q, ZHANG X L. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development, 2019,146(14): dev180166. [32] HAN Y K, ZHAO F Y, GAO S, WANG X Y, WEI A M, CHEN Z G, LIU N, TONG X Q, FU X M, WEN C L, ZHANG Z X, WANG N G, DU S L. Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theoretical and Applied Genetics, 2018, 131(2): 449-460. [33] PAN Y P, QU S P, BO K L, GAO M L, HAIDER K R, WENG Y Q. QTL mapping of domestication and diversifying selection related traits in round‑fruited semi‑wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 2017, 130: 1531-1548. [34] SHANG Y, MA Y S, ZHOU Y, ZHANG H M, DUAN L X, CHEN H M, ZENG J G, ZHOU Q, WANG S H, GU W H, LIU M, REN J W, GU X F, ZHANG S P, WANG Y, YASUKAWA K, BOUWMEESTER H J, QI X Q, ZHANG Z H, LUCAS W J, HUANG S W. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346: 1084-1088. [35] YANG S, CAI Y l, LIU X W, DONG M M, ZHANG Y Q, CHEN S Y, ZHANG W B, LI Y J, TANG M, ZHAI X L, WENG Y Q, REN H Z. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany, 2018, 69(8): 1887-1902. [36] YANG S, WEN C L, LIU B, CAI Y L, XUE S D, BARTHOLOMEW E S, DONG M M, JIAN C, XU S, WANG T, QI W Z, PANG J N, MA D H, LIU X W, REN H Z. A CsTu-TS1 regulatory module promotes fruit tubercule formation in cucumber. Plant Biotechnology Journal, 2019, 17(1): 289-301. [37] LIU X F, NING K, CHE G, YAN S S, HAN L J, GU R , LI Z, WENG Y Q, ZHANG X L. CsSPL functions as an adaptor between HD‐ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus (cucumber). The Plant Journal, 2018, 94: 535-547. [38] ZHAO J Y, JIANG L, CHE G, PAN Y P, LI Y Q, HOU Y, ZHAO W S, ZHONG Y T, DING L, YAN S S, SUN C Z, LIU R Y, YAN L Y, WU T, LI X X, WENG Y Q, ZHANG X L. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. The Plant Cell, 2019, 31(6): 1289-1307. [49] 蔡和序, 薄凯亮, 周琪, 苗晗, 董邵云, 顾兴芳, 张圣平. 黄瓜幼苗下胚轴长度GWAS分析及候选基因挖掘. 中国农业科学, 2020, 53(1): 122-132. CAI H X, BO K L, ZHOU Q, MIAO H, DONG S Y, GU X F, ZHANG S P. GWAS analysis of hypocotyl length and candidate gene mining in cucumber seedlings. Scientia Agricultura Sinica, 2020, 53(1): 122-132. (in Chinese) [40] 潘健, 温海帆, 何欢乐, 连红莉, 王刚, 潘俊松, 蔡润. 黄瓜ERF基因家族鉴定及其在雌花芽分化中的表达分析. 中国农业科学, 2020, 53(1): 133-147. PAN J, WEN H F, HE H L, LIAN H L, WANG G, PAN J S, CAI R. Genome-wide identification of cucumber ERF gene family and expression analysis in female bud differentiation. Scientia Agricultura Sinica, 2020, 53(1): 133-147. (in Chinese) [41] 宋维源, 侯钰, 赵剑宇, 刘小凤, 张小兰. 黄瓜CsRPL1/2的克隆及其功能分析. 中国农业科学, 2020, 53(1): 148-159. Song W Y, Hou Y, Zhao J Y, Liu X F, Zhang X L. Cloning and functional analysis of CsRPL1/2 in cucumber. Scientia Agricultura Sinica, 2020, 53(1): 148-159. (in Chinese) [42] 牛志红, 宋晓飞, 李晓丽, 郭晓雨, 何书强, 贺栾劲芝, 冯志红, 孙成振, 闫立英. 黄瓜单性结实性状遗传与QTL定位.中国农业科学, 2020, 53(1): 160-171. NIU Z H, SONG X F, LI X L, GUO X Y, HE S Q, HE L J Z, FENG Z H, SUN C Z, YAN L Y. Inheritance and QTL mapping for parthenocarpy in cucumber. Scientia Agricultura Sinica, 2020, 53(1): 160-171. (in Chinese) [43] 亓飞, 林姝, 宋蒙飞, 张孟茹, 陈姝延, 张乃心, 陈劲枫, 娄群峰. 黄瓜抗白粉病突变体筛选与鉴定. 中国农业科学, 2020, 53(1): 172-182. QI F, LIN S, SONG M F, ZHANG M R, CHEN S Y, ZHANG N X, CHEN J F, LOU Q F. Screening and identification of cucumber mutant resistant to powdery mildew. Scientia Agricultura Sinica, 2020, 53(1): 172-182. (in Chinese) Molecular Biology of Important Agronomic Traits in CucumberZHANG ShengPing, GU XingFang (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Biology and Germplasm Creation, Ministry of Agriculture and Rural Areas, Beijing 100081) 收稿日期:2019-12-14; 接受日期:2019-12-30 基金项目:中国农业科学院创新工程(CAAS-ASTIP-2017-IVF) doi: 10.3864/j.issn.0578-1752.2020.01.011 (责任编辑 赵伶俐)
|