微生物介导的表没食子儿茶素没食子酸酯生物转化及其代谢物活性研究进展微生物介导的表没食子儿茶素没食子酸酯生物转化及其代谢物活性研究进展 杜敏如,房倩安,廖振林,方 祥*,王 洁* (华南农业大学食品学院,广东 广州 510642) 摘要:表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)是从茶叶中分离的多酚类黄酮化合物,具有抗氧化、抗菌、抗肿瘤、降低胆固醇、减肥等生物学功能;但EGCG不稳定的结构及较低的生物利用度限制了其生理功效的发挥。据报道,EGCG经过微生物代谢后,其稳定性、生物利用度明显提高,且大部分代谢产物保留了EGCG原有的生理活性,其中某些生理活性甚至要高于EGCG本身。本文将对微生物介导的EGCG生物转化及其代谢物活性进行综述,重点阐述EGCG代谢产物、代谢途径及代谢物活性,以期为开发EGCG相关的高值化产品及微生物介导多酚转化促进人体健康的深入研究提供理论依据。 关键词:表没食子儿茶素没食子酸酯;生物转化;微生物;代谢途径;生物活性 表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG)(图1)是绿茶中含量最多的多酚物质,占茶叶中总儿茶素的50%~80%,具有广泛的生物活性和保健功能,如抗氧化、抗菌、抗炎、抗病毒、预防癌症、降低胆固醇、降血糖、减肥等[1-6]。然而,EGCG在实际应用中存在一定的局限性,如高浓度的EGCG会导致肝脏、肾脏、胃肠道中毒[7-9],心律失常和心脏功能紊乱[10]等问题;其次EGCG结构中含有不饱和键及8 个酚羟基,化学稳定性较差,在光照、高温、碱性等条件下易被氧化、降解[11],使其原有的生物活性发生变化;此外,EGCG在体内的生物利用度很低,EGCG进入小鼠肠道后,仅有0.1%~1.6%被吸收[12-13],大部分EGCG在体内发生代谢转化或由粪便/尿液排出。研究表明,EGCG经微生物转化后小鼠体内的吸收率可达到32.1%以上[14]、生物利用度达39%以上[15-16]、抗氧化能力提高46%[17];且不同微生物介导EGCG转化的产物也不尽相同,如EGCG被小鼠肠道菌群先后转化成表没食子儿茶素(epigallocatechin,EGC)、三羟基苯-异丙醇、戊酸类化合物、γ-戊内酯等,而被黑曲霉、烟曲霉先后转化成EGC、没食子酸(gallic acid,GA)、3,6-双氢-6-氧-2H-吡喃基团的儿茶素氧化物[18]。因此本文综述了不同微生物介导EGCG生物转化的相关研究,重点阐述EGCG的代谢产物、代谢途径及代谢物的生物活性,旨在为EGCG的进一步开发利用及EGCG微生物转化促进生理健康的深入研究提供理论依据。 1 介导EGCG生物转化的微生物微生物转化是通过微生物细胞或其分泌的酶系对外源性有机化合物进行结构修饰和改造,从而得到目的产物的生化反应,其具有高度专一性、反应条件温和、成本低、无有害物质添加、易于基因操作等优点[19]。目前报道的介导EGCG生物转化的微生物主要集中在人肠道细菌、鼠肠道菌群、乳酸菌及各种真菌。Takagaki等[20]从169 只雄性Wistar大鼠肠道细菌中筛选出4 株能够将EGCG转化为EGC和GA的菌株,分别为Enterobacter aerogenes、Raoultella planticola(Klebsiella planticola)、K. pneumoniae subsp. pneumoniae和Bifidobacterium longum subsp. infantis(B. infantis);随后发现可使EGC的C环开环的微生物Eggerthella lenta JCM 9979、Adlercreutzia equolifaciens MT4s-5和EGC的A环裂解的微生物Flavonifractor plautii MT42、Flavonifractor plautii ATCC 29863、Flavonifractor plautii ATCC 49531,以及脱去C环4’处羟基的Adlercreutzia equolifaciens MT4s-5和Eggerthella lenta JCM 9979[21];除此之外,3 株参与黄酮类物质代谢的大鼠肠道细菌同样具有降解EGC的能力,分别是Adlercreutzia equolifaciens JCM 14793、Asaccharobacter celatus JCM 14811和Slackia equolifaciens JCM 16059[22]。 除了鼠肠道细菌之外,人肠道细菌Eggerthella sp.SDG-2[23]亦可降解EGCG,乳酸菌也可参与EGCG的生物转化,如从发酵绿茶中分离的Leuconostoc mesenteroides MBE1424[24]和从泡菜中分离的Lactobacillus plantarum 22A-4[25]可将EGCG转化为EGC和GA。主要由醋酸菌和酵母组成的红茶菌将EGCG转化成EGC和GA[26];另外,真菌如从茶叶或土壤中分离的黑曲霉、烟曲霉、米曲霉、拟青霉、根霉、冠突散囊菌等也可将EGCG降解成为EGC、GA及其他活性物质[27-29]。 2 EGCG的微生物转化代谢产物及代谢途径肠道菌群、乳酸菌、真菌等微生物通过水解、环裂解、脱羟基、内酯化、甲基化等酶促反应将EGCG不同程度地转化成EGC、GA、γ-戊内酯、酚酸及其他中间体或代谢物。 2.1 肠道微生物及乳酸菌介导的EGCG生物转化目前EGCG微生物转化方面研究最多的是通过肠道微生物介导的转化。肠道微生物能分泌许多与宿主能量代谢、物质代谢及遗传信息传递等生理过程密切相关的多种酶系,如水解酶、氧化还原酶、裂解酶和转移酶等[30]。EGCG在这些酶的作用下发生水解、环裂解、脱羟基、内酯化等反应逐步转变成戊酸、戊内酯及其衍生物和小分子酚酸等化合物(图1)。 就一部文学作品本身来讲,作者在写作时会有自己的预期读者,而这些作者心目中预期的读者一般都会跟作者有同样的文化背景,这样作者在行文和组织文章语境和文化上及认知上的连贯时就会有意无意地预留一些“空白点”,同文化背景的读者在看到这些“空白点”时就会凭借以往的文化背景积淀及相关的联想而自动产生意义,从而就会自觉得领略到作者在原文安排时所传达的信息和色彩以及这些“空白点”带来的绵长的不言而明的蕴意。而对于其他不同民族的读者来说,文学作品中的这种缺省就会造成交流上的障碍,会使得读者困惑或者直接造成理解中断,这样一来,这种作者所留的旨在促进沟通融合的“空白点”就会变成真正的“理解真空点”。 Takagaki等[20-21]证实雄性Wistar大鼠肠道菌群通过3 条代谢途径介导EGCG生物转化(图1)。首先,EGCG在E. aerogenes、R. planticola、K. pneumoniae susp.Pneumoniae和B. longum subsp. Infantis的作用下,水解没食子酸酯键生成EGC和GA;其次,在A. equolifaciens MT4s-5或E. lenta JCM 9979的作用下,EGC的C环开环生成1-(3’,4’,5’-三羟基苯基)-3-(2’,4’,6’-三羟基苯基)-2-丙醇(M1),同时A. equolifaciens JCM 14793、A. celatus JCM 14811、A. equolifaciens MT4s-5可使EGC 4’-羟基脱去生成4’-脱氧EGC(M7);随后M1可在A. equolifaciens MT4s-5和E. lenta JCM 9979的作用下脱去4’-羟基,生成1-(3’,5’-二羟基苯基)-3-(2’,4’,6’-三羟基苯基)-2-丙醇(M2);紧接着F. plautii MT42、ATCC 29863、ATCC 49531可使M1和M2的间苯三酚环发生裂解,分别生成4-羟基-5-(3’,4’,5’-三羟基苯基)戊酸(M3)和4-羟基-5-(3’,5’-二羟基苯基)戊酸(M5);A. equolifaciens MT4s-5和E. lenta JCM 9979迅速地使M3和M5发生内酯化反应,分别生成5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)和5-(3’,5’-二羟基苯基)-γ-戊内酯(M6);与此同时,一小部分的M5转化为3-(3,5-二羟基苯基)丙酸(M8)或经两步脱羟基反应生成5-(3’,5’-二羟基苯基)-戊酸(M10)和5-(3’-羟基苯基)-戊酸(M11);M3脱去戊酸链上的C4处的羟基,生成(3’,4’,5’-三羟基苯基)戊酸(M9),且M9在脱羟基微生物的作用下生成M10;除此之外,A. equolifaciens MT4s-5和Eubacterium sp. strain SDG-2可以直接使EGC开环和脱去4’-羟基[23],生成M2;M3可在A. equolifaciens JCM 14793或A. celatus JCM 14811的作用下脱去4’-羟基,生成M5[22]。与此同时,陈欣[31]发现EGCG在大鼠大肠菌群作用下转变成小分子酚酸类和儿茶素类的代谢产物,主要为GA、3-O-甲基没食子酸或4-O-甲基没食子酸、对羟基苯丙酸及表儿茶素没食子酸酯。 维普资讯服务方式以 “网络包库”、“镜像”为主。个人付费用户超过1000万;服务方式以“流量”为主。主营业务收入超过亿元。其中不同销售模式的占比分别为:包库为65%、镜像站为30% 、流量计费为5%;广告收入为200万左右。 图 1 肠道微生物介导EGCG生物转化的代谢途径[20-23,32-34]
Fig. 1 Microbial metabolism pathway of EGCG in the intestinal microbiota[20-23,32-34]
人、猪肠道菌群转化EGCG途径与鼠肠道菌群大致相同,但因菌群不完全一致,代谢途径也存在一定差异(图1)。Wang Liquan等[23]在人结肠菌群中分离的Eubacterium sp.strain SDG-2将EGC的C环裂解,生成M1,随后脱羟基生成M2。Schantz等[32]证实末端回肠造口液中的E. coli、Proteus sp.、Enterococcus sp.、Bacteroides sp.、Bifidobacterium sp.、Lactobacilius sp.、Geotrichum sp.等微生物共同作用下将EGCG先降解为EGC和GA,随后转化为M4和间苯三酚。Roowi等[33]发现羟基苯戊酸(如M9)可在肠道氧化酶的作用下侧链被氧化生成对羟基苯乙酸和对羟基苯甲酸;随后,对羟基苯乙酸经甲基化生成3-甲氧基-4-羟基苯乙酸,且对羟基苯甲酸转变成马尿酸;同时,GA的3-O-没食子基团也发生裂解,进一步生成连苯三酚及其脱羟基化合物邻苯二酚。在猪盲肠微生物作用下,EGC转化成3’,4’-二羟基苯基丙酸、3’-羟基苯基丙酸、4’-羟基苯基丙酸、3’,4’-二羟基苯基乙酸、3’-羟基苯基乙酸等小分子酚酸化合物[34]。 除肠道微生物外,乳酸菌具有β-葡萄糖苷酶、β-葡萄糖醛酸酶、β-木糖苷酶等丰富的酶系,可以将EGCG水解成EGC和GA,如高β-葡糖醛酸糖苷酶活力的L. mesenteroides MBE1424将60%的EGCG转化为EGC和GA[24],高产单宁酶的L. plantarum 22A-4将80%的EGCG单体分解成EGC和GA[25];且β-葡糖醛酸糖苷酶、单宁酶的活性越高,EGCG转化能力越强。 里面由吴樾饰演的张三全剧没有大名,就一直叫张三。事实上这部剧的原型人物应该是清末的一位武林奇人——张长祯。当时这位在武林中的外号叫做“醉鬼”,电视剧中美化成了“醉侠”。 2.2 真菌介导的EGCG生物转化真菌分布广、繁殖快,对自然环境的变化适应能力强,具有丰富的酶系,其介导EGCG生物转化也备受研究者关注。据报道,从黑茶中分离的冠突散囊菌、黑曲霉、根霉可以将EGCG转化成EGC、GA,并进一步将EGC、GA转化成其他未知物质[27];从茶树叶分离的青霉(Penicillium P-24)可降解EGCG,并产生新的化合物[35];从茶树中获得的内生真菌Diaporthe sp.将EGCG转化成3,4-二羟基黄烷衍生物[36]。与此同时,Zhong Kun等[28-29]发现EGCG可诱导黑曲霉或米曲霉分泌一种水解酶,继而水解酶可将EGCG水解成EGC和GA,且黑曲霉来源的水解酶水解能力强于米曲霉;此外,黑曲霉[37]、青霉[38]和宛氏拟青霉[39]所分泌的单宁酶可将EGCG转化为EGC和GA。然而,目前真菌介导的EGCG生物转化代谢主要是EGC和GA,其他物质还有待于进一步深入研究,且代谢相关的酶系主要是水解酶和单宁酶,其他功能酶系未知。 3 EGCG微生物转化产物的生物活性EGCG具有抗氧化、抗肿瘤、免疫调节等多种生理活性,但其稳定性差、生物利用度低;研究表明EGCG通过微生物转化后不仅生物利用度提高,且在保持原有生物活性的同时可能增强某些生理活性。 3.1 抗氧化活性EGCG的结构上含有多个活泼酚羟基,具有很强的还原性,可作为良好的抗氧化剂。EGCG经微生物转化的代谢产物同样具有广泛的抗氧化活性。Takagaki等[40]比较了EGCG、EGC及其环裂解产物的抗氧化能力,发现EGCG经生物转化后,仍然保持了原有的抗氧化能力,且发现γ-戊内酯类化合物对2,2’-联氮-双-3-乙基苯并噻唑啉-6-磺酸(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),ABTS)阳离子自由基的清除能力虽然只有EGCG的14%~66%,但稍高于Trolox,具体顺序如下:EGCG>EGC>1-(3’,5’-二羟基苯基)-3-(2’,4’,6’-三羟基苯基)-2-丙醇(M2)>5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)>5-(3’,5’-二羟基苯基)-γ-戊内酯(M6)>Trolox。Kim等[41]发现EGCG经米曲霉转化的代谢产物EGC和GA清除ABTS阳离子自由基、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和铁离子还原能力比未转化前高14%~50%。另外,EGCG分别与不同真菌来源的单宁酶共孵育后,ABTS阳离子自由基、DPPH自由基清除率及氧化自由基吸收能力较转化前提高了17.9%~46.0%,显现出了更强的抗氧化能力[42-45]。 3.2 抗肿瘤活性EGCG在体内外通过激活抑癌基因、诱导细胞凋亡、抑制肿瘤血管生成等作用对不同肿瘤细胞如乳腺癌、前列腺癌、结肠癌等都有较好的抑制作用[46]。近年来,随着EGCG微生物转化代谢产物的发现,代谢产物的抗肿瘤活性引起众多研究者的关注。Hara-Terawaki等[47]发现EGCG代谢产物1-(3’,4’,5’-三羟基苯基)-3-(2’,4’,6’-三羟基苯基)-2-丙醇(M1)、4-羟基-5-(3’,4’,5’-三羟基苯基)戊酸(M3)和5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)对HeLa细胞抗增殖能力均强于EGCG,其中4-羟基-5-(3’,4’,5’-三羟基苯基)戊酸(M3)提高了7.6 倍,说明代谢产物的C环上的3 个相邻的羟基对细胞的抗增殖作用至关重要。5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)抑制人类结肠癌细胞(HT-29和HCT-116)、食管鳞状癌细胞(KYSE150)及前列腺癌细胞(LNCap)增殖而对HeLa细胞无作用[48-49]。另外,高浓度EGCG经宛氏拟青霉来源的单宁酶转化后降低了其对正常细胞的毒性,但不改变其对HT 29和PG 100细胞的抗增殖作用,同时诱导促凋亡基因的表达[50]。这些结果证明EGCG微生物转化代谢产物抗肿瘤活性具有选择性,抗肿瘤活性强弱取决于代谢物结构,且代谢产物可能在保持原有的抗肿瘤活性同时降低了高浓度EGCG细胞毒性,可为癌症化学预防的未来研究提供一种新的思路。 This study was supported by the National Natural Science Foundation of China(No.61401513). 3.3 免疫调节功能EGCG对固有免疫细胞、适应性免疫细胞均具有免疫调节作用,其微生物转化代谢产物同样具有免疫调节作用。Kim等[51]发现EGC的B环4’脱羟基代谢产物1-(3’,5’-二羟基苯基)-3-(2’,4’,6’-三羟基苯基)-2-丙醇(M2)、4-羟基-5-(3’,5’-二羟基苯基)戊酸(M5)和5-(3’,5’-二羟基苯基)-γ-戊内酯(M6)能够促进CD4+T细胞的活性,而EGCG、EGC等没有这种活性,表明在B环上缺乏4’-羟基的代谢物具有免疫刺激活性。除促进CD4+T细胞活性外,M5还可显著上调脾脏淋巴细胞中由PHA诱导的IFN-γ因子的产生,且IFN-γ因子分泌的量要比同浓度的EGC要高;也可刺激自然杀伤细胞对YAC-1细胞毒力的抗性,促进YAC-1淋巴瘤细胞的死亡。5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)可以抑制由脂多糖诱导的小鼠巨噬细胞(RAW264.7)产生的炎症因子,如花生四烯酸和一氧化氮的释放[48]。除了上述化合物外,EGCG代谢产物中的一些小分子酚酸化合物如3-羟基苯乙酸、4-羟基苯乙酸、4-羟基苯甲酸等可以抑制由脂多糖诱导的外周血单核细胞的促炎因子(肿瘤坏死因子-α、白细胞介素-1、白细胞介素-6)的产生[52];此外,5-(3’,4’-二羟基苯基)-γ-戊内酯(M12)可以抑制基质金属蛋白酶(MMP-1、MMP-2和MMP-9)的产生[53]。 根据上述研究方法,建立参照系的基本数据指标见表1,2010~2017年湖南各地级市(州)评价指标基本数据通过综合收集整理列于表2。依上述研究方法和公式(1)~(4)计算得出2010~2017年湖南各地级市(州)相对资源承载力及其演化过程见表3及图1。 3.4 其他生物活性除抗氧化、抗肿瘤、免疫调节功能外,EGCG微生物转化产物在抗黏附、抑制血管紧张素转移酶I、激活AMPK信号通路等方面也有重要作用。5-(3’,4’-二羟基苯基)-γ-戊内酯(M12)及其硫酸盐结合物,对膀胱上皮细胞中的致病性大肠杆菌具有抗黏附活性[54];5-(3’,4’,5’-三羟基苯基)-γ-戊内酯(M4)和5-(3’,5’-二羟基苯基)-γ-戊内酯(M6)会抑制血管紧张素转移酶I的产生,从而降低自发性高血压的发生,减缓高浓度EGCG诱发的心率失常或高血压[55];5-(3’,5’-二羟基苯基)-γ-戊内酯(M6)比EGCG和EGC具有更高的血脑渗透性,可以轻易进入大脑,且可以成倍延长神经母细胞SH-SY5Y的神经突长度[56];4-羟基-5-(3’,5’-二羟基苯基)戊酸(M5)通过激活AMPK信号通路,诱导GLUT4向骨骼肌细胞膜转移,促使更多的葡萄糖转运到细胞内部并被利用[57]。 不同微生物介导的EGCG生物转化及转化产物活性总结如表1所示。 表 1 不同微生物介导的EGCG生物转化
Table 1 Biotransformation of EGCG by different microorganisms 注:-.文献未说明。 菌株名称 代谢产物 来源 生理活性 参考文献Enterobacter aerogenes EGCG→EGC+GA 大鼠 抗氧化 [20,40]Raoultella planticola(Klebsiella planticola)K. pneumoniae subsp. pneumoniae Bifidobacterium longum subsp.infantis(B. infantis)Eggerthella lenta JCM 9979 1)EGC→M1日本Riken理化学研究所抗肿瘤 [21,47]2)M1→M2 抗氧化、抗炎症 [21,40,51]3)M3→M5 抗炎症、降血糖 [21,51,57]4)M4→M6 抗氧化、抗炎症、降血压 [21,40,51,55]Adlercreutzia equolifaciens MT4s-5 1)EGC→M1大鼠抗肿瘤 [21,47]2)EGC→M7 — [21]3)M1→M2 抗氧化、抗炎症 [21,40,51]4)M3→M5 抗炎症、降血糖 [21,51,57]Flavonifractor plautii MT42 1)M1→M3 大鼠 抗肿瘤、抗炎症 [21,47-48]Flavonifractor plautii ATCC 29863 美国模式培养物集存库Flavonifractor plautii ATCC 49531 2)M2→M5 美国模式培养物集存库 抗炎症、降血糖 [21,51,57]Slackia equolifaciens JCM 16059 EGC→M1 日本Riken理化学研究所 抗肿瘤 [22,47]Asaccharobacter celatus JCM 14811 1)EGC→M1日本Riken理化学研究所抗肿瘤 [22,47]2)M1→M2 抗氧化、抗炎症 [22,40,51]3)M3→M5 抗炎症、降血糖 [22,51,57]4)M4→M6 抗氧化、抗炎症、降血压 [22,40,51,55]Adlercreutzia equolifaciens JCM 14793(H2)1)EGC→M7日本Riken理化学研究所—[22]2)M1→M2 抗氧化、抗炎症 [22,51]3)M3→M5 抗炎症、降血糖 [22,51,57]4)M4→M6 抗氧化、抗炎症、降血压 [22,40,51,55]Eggerthella sp. SDG-2 1)EGC→M1 人 抗肿瘤 [23,47]2)M1→M2 抗氧化、抗炎症 [23,40,51]Leuconostoc mesenteroides EGCG→EGC+GA发酵绿茶 — [24]Lactobacillus plantarum 泡菜 — [25]Asperigllus oryzae CCUG 33812 瑞典哥德堡大学 抗氧化 [29,41]Rhizopus 茶叶抗氧化[27]Eurotium cristatum 茶叶 [27]Aspergillus niger 茶叶、土壤 [27,28]Penicillium P-24 土壤 抗氧化 [35]Paecilomyces variotii 巴西环境和工业微生物保藏中心 抗氧化 [39]Penicillium chermesinum 茶树 — [38]Diaporthe sp. EGCG→3,4-二羟基黄烷衍生物 茶树 — [36]
4 结 语本文对介导EGCG生物转化的微生物、EGCG微生物转化产物、代谢途径及其代谢物生理活性进行总结,发现EGCG在肠道微生物的作用下发生水解、环裂解、脱羟基、戊内酯化等反应最终生成一系列小分子酚酸代谢产物,也可在乳酸菌和真菌作用下发生水解反应生成EGC、GA,并进一步将EGC转化成3,4-二羟基黄烷衍生物及其他代谢产物;代谢产物生物利用度提高,且大部分代谢产物保留了EGCG原有的抗氧化性、抗肿瘤活性、免疫调节等活性,其生物活性强弱与代谢产物结构密切相关。但目前除肠道菌群介导EGCG的代谢途径被解析外,其他微生物的代谢途径还不明确;另外,代谢产物除抗氧化、抗肿瘤、免疫调节以外的生物活性还有待于进一步深入研究;此外,微生物代谢过程中涉及到的相关酶系以及代谢调控机制的报道较少,不利于EGCG微生物转化的精准调控。因此,综合利用现代组学、现代天然产物化学、分子生物学、细胞生物学、基因编辑等技术全面明确不同微生物介导的EGCG生物转化通路、调控机制及代谢产物的生物活性,可为EGCG生物转化精准调控、EGCG相关高值化产品开发以及微生物介导多酚转化促进健康的深入研究提供理论依据。 参考文献: [1] RADY I, MOHAMED H, RADY M, et al. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea[J].Egyptian Journal of Basic and Applied Sciences, 2018, 5(1): 1-23.DOI:10.1016/j.ejbas.2017.12.001. [2] LAGHA AB, GRENIER D. Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages[J].Cytokine, 2019, 115: 64-75. DOI:10.1016/j.cyto.2018.12.009. [3] AL HROOB A M, ABUKHALIL M H, HUSSEIN O E, et al.Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate[J]. Biomedicine& Pharmacotherapy, 2019, 109: 2155-2172. DOI:10.1016/j.biopha.2018.11.086. [4] GAN R, LI H, SUI Z, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review[J]. Critical Reviews in Food Science and Nutrition, 2018,58(6): 924-941. DOI:10.1080/10408398.2016.1231168. [5] RAHMAN S U, LI Y, HUANG Y, et al. Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches[J]. Inflammopharmacology, 2018, 26(2): 319-330. DOI:10.1007/s10787-018-0462-4. [6] NEGRI A, NAPONELLI V, RIZZI F, et al. Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer[J]. Nutrients, 2018, 10(12): 1936-1959.DOI:10.3390/nu10121936. [7] RASHEED N O A, AHMED L A, ABDALLAH D M, et al. Nephrotoxic effects of intraperitoneally injected EGCG in diabetic mice:involvement of oxidative stress, inflammation and apoptosis[J].Scientific Reports, 2017, 7(1): 1-8. DOI:10.1038/srep40617. [8] DEKANT W, FUJII K, SHIBATA E, et al. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements[J]. Toxicology Letters, 2017, 277: 104-108.DOI:10.1016/j.toxlet.2017.06.008. [9] RUTA L L, POPA C V, NICOLAU I, et al. Epigallocatechin-3-O-gallate, the main green tea component, is toxic to Saccharomyces cerevisiae cells lacking the Fet3/Ftr1[J]. Food Chemistry, 2018, 266:292-298. DOI:10.1016/j.foodchem.2018.06.029. [10] LEI B, FU L, HUI C, et al. High concentration of epigallocatechin-3-gallate increased the incidences of arrhythmia and diastolic dysfunction via β2-adrenoceptor[J]. Journal of Food Science, 2015,80(3): 659-663. DOI:0.1111/1750-3841.12803. [11] 闫晓佳, 梁秀萍, 李思琪, 等. 表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J]. 食品科学, 2020, 41(1): 258-266.DOI:10.7506/spkx1002-6630-20181206-076. [12] KAWABATA K, YOSHIOKA Y, TERAO J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols[J]. Molecules, 2019, 24(2): 1-25. DOI:10.3390/molecules24020370. [13] DEL RIO D, CALANI L, CORDERO C, et al. Bioavailability and catabolism of green tea flavan-3-ols in humans[J]. Nutrition, 2010,26(11/12): 1110-1116. DOI:10.1016/j.nut.2009.09.021. [14] KOHRI T, MATSUMOTO N, YAMAKAWA M, et al. Metabolic fate of (-)-(4-3H)epigallocatechin gallate in rats after oral administration[J].Journal of Agricultural and Food Chemistry, 2001, 49(8): 4102-4112.DOI:10.1021/jf001491+. [15] INOUE H, AKIYAMA S, MAEDA-YAMAMOTO M, et al. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodiuminduced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions[J]. Cell Stress and Chaperones, 2011,16(6): 653-662. DOI:10.1007/s12192-011-0280-8. [16] LI C, LEE M, SHENG S, et al. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion[J]. Chemical Research in Toxicology, 2000, 13(3):177-184. DOI:10.1021/tx9901837. [17] ONG C, ANNUAR M S M. Polyphenolic composition and in vitro antioxidant activities of native- and tannase-treated green tea extracts[J]. International Journal of Food Science & Technology, 2017,52(3): 748-756. DOI:10.1111/ijfs.13331. [18] QIN J, LI N, TU P, et al. Change in tea polyphenol and purine alkaloid composition during solid-state fungal fermentation of postfermented tea[J]. Journal of Agricultural and Food Chemistry, 2012, 60(5): 1213-1217. DOI:10.1021/jf204844g. [19] 关松磊, 吴雅馨, 孙赫, 等. 微生物转化技术在中药开发中的应用进展[J]. 微生物学通报, 2018, 45(4): 900-906. DOI:10.13344/j.microbiol.china.170409. [20] TAKAGAKI A, NANUO F. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora[J]. Journal of Agricultural and Food Chemistry,2010, 58(2): 1313-1321. DOI:10.1021/jf903375s. [21] TAKAGAKI A, KATO Y, NANJO F. Isolation and characterization of rat intestinal bacteria involved in biotransformation of(-)-epigallocatechin[J]. Archives of Microbiology, 2014, 196(10): 681-695. DOI:10.1007/s00203-014-1006-y. [22] TAKAGAKI A, NANJO F. Biotransformation of (-)-epigallocatechin and (-)-gallocatechin by intestinal bacteria involved in isoflavone metabolism[J]. Biological and Pharmaceutical Bulletin, 2015, 38(2):325-330. DOI:10.1248/bpb.b14-00646. [23] WANG Liquan, MESELHY M R, LI Y, et al. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium[J].Chemical & Pharmaceutical Bulletin, 2001, 49(12): 1640-1643.DOI:10.1002/chin.200217033. [24] CHOI C, PARK E, JU Y, et al. Increase of epigallocatechin in green tea extract by lactic acid bacteria fermentation[J]. Korean Journal of Microbiology and Biotechnology, 2016, 44(1): 62-67. DOI:10.4014/mbl.1511.11015. [25] HAYASHI T, UEDA S, TSURUTA H, et al. Complexing of green tea catechins with food constituents and degradation of the complexes by Lactobacillus plantarum[J]. Bioscience of Microbiota Food and Health, 2012, 31(2): 27-36. DOI:10.12938/bmfh.31.27. [26] JAYABALAN R, MARIMUTHU S, SWAMINATHAN K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation[J]. Food Chemistry, 2007, 102(1): 392-398.DOI:10.1016/j.foodchem.2006.05.032. [27] 黄秋桂, 张灵枝, 谭新东. 黑茶发酵优势菌对茶多酚的生物转化研究[J]. 广东农业科学, 2014, 41(19): 86-89; 117. DOI:10.3969/j.issn.1004-874X.2014.19.020. [28] ZHONG Kun, ZHAO Shengyin, JONSSON L J, et al. Enzymatic conversion of epigallocatechin gallate to epigallocatechin with an inducible hydrolase from Aspergillus niger[J].Biocatalysis and Biotransformation, 2008, 26(4): 306-312.DOI:10.1080/10242420802090487. [29] ZHONG Kun, SHAO Zhiyu, HONG Feng. Enzymatic production of epigallocatechin by using an epigallocatechin gallate hydrolase induced from Aspergillus oryzae[J]. Biotechnology Progress, 2008,24(3): 583-587. DOI:10.1021/bp070409t. [30] 王凤, 赵成英, 田桂芳, 等. 果蔬功能成分与肠道菌群相互作用研究进展[J]. 生物产业技术, 2017(4): 53-61. DOI:10.3969/j.issn.1674-0319.2017.04.008. [31] 陈欣. 普洱茶茶褐素与EGCG在大鼠肠道菌群作用下代谢产物分析[D].合肥: 安徽农业大学, 2016: 29-30. [32] SCHANTZ M, ERK T, RICHLING E. Metabolism of green tea catechins by the human small intestine[J]. Biotechnology Journal,2010, 5(10): 1050-1059. DOI:10.1002/biot.201000214. [33] ROOWI S, STALMACH A, MULLEN W, et al. Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2):1296-1304. DOI:10.1021/jf9032975. [34] VANˈT SLOT G, HUMPF H. Degradation and metabolism of catechin,epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model[J]. Journal of Agricultural and Food Chemistry, 2009, 57(17): 8041-8048. DOI:10.1021/jf900458e. [35] 朱继新. 产单宁酶真菌的筛选及其对茶多酚的生物转化[D]. 福州:福建师范大学, 2013: 61-62. [36] AGUSTA A, MAEHARA S, OHASHI K, et al. Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp.isolated from a tea plant[J]. Chemical & Pharmaceutical Bulletin,2005, 53(12): 1565-1569. DOI:10.1002/chin.200618209. [37] NI Hui, CHEN Feng, JIANG Zedong, et al. Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct[J]. LWT-Food Science and Technology,2015, 60(2): 1206-1213. DOI:10.1016/j.lwt.2014.09.010. [38] RAGHUWANSHI S, MISRAS, SAXENA R K. Enzymatic treatment of black tea (CTC and kanger orthodox) using Penicillium charlesii tannase to improve the quality of tea[J]. Journal of Food Processing and Preservation, 2013, 37(5): 855-863. DOI:10.1111/j.1745-4549.2012.00721.x. [39] MADERIA J V, MACEDO J A, MACEDO G A. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace[J]. Bioprocess and Biosystems Engineering, 2012, 35(3): 477-482. DOI:10.1007/s00449-011-0587-y. [40] TAKAGAKI A, OTANI S, NANJO F. Antioxidative activity of microbial metabolites of (-)-epigallocatechin gallate produced in rat intestines[J]. Bioscience Biotechnology Biochemistry, 2011, 75(3):582-585. DOI:10.1271/bbb.100683. [41] KIM M J, JOHN K M M, CHOI J N, et al. Changes in secondary metabolites of green tea during fermentation by Aspergillus oryzae and its effect on antioxidant potential[J]. Food Research International,2013, 53(2): 670-677. DOI:10.1016/j.foodres.2012.12.053. [42] HONG Y, JUNG E Y, PARK Y, et al. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts[J]. Bioscience Biotechnology and Biochemistry, 2013, 77(1):22-29. DOI:10.1271/bbb.120373. [43] BATTESTIN V, MACEDO G A, DE FREITAS V A P. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii[J]. Food Chemistry, 2008, 108(1): 228-233. DOI:10.1016/j.foodchem.2007.10.068. [44] MACEDO J A, FERREIRA L R, CAMARA L E, et al.Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365. DOI:10.1016/j.foodchem.2012.01.041. [45] LOTITO S B, ZHANG W, YANG C S, et al. Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties[J]. Free Radical Biology and Medicine, 2011, 51(2): 454-463. DOI:10.1016/j.freeradbiomed.2011.04.032. [46] GAN R, LI H, SUI Z, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review[J]. Critical Reviews in Food science and Nutrition, 2018, 58(6):924-941. DOI:10.1080/10408398.2016.1231168. [47] HARA-TERAWAKI A, TAKAGAKI A, KOBAYASHI H, et al.Inhibitory activity of catechin metabolites produced by intestinal microbiota on proliferation of HeLa cells[J]. Biological &Pharmaceutical Bulletin, 2017, 40(8): 1331-1335. DOI:10.1248/bpb.b17-00127. [48] LAMBERT J D, RICE J E, HONG J, et al. Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxyderivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2005,15(4): 873-876. DOI:10.1016/j.bmcl.2004.12.070. [49] STANISLAWSKA I J, GRANICA S, PIWOWARSKI J P, et al.The activity of urolithin A and M4 valerolactone, colonic microbiota Metabolites of polyphenols, in a prostate cancer in vitro model[J].Planta Medica, 2019, 85(2): 118-125. DOI:10.1055/a-0755-7715. [50] MACEDO J A, FERREIRA L R, CAMARA L E, et al.Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365. DOI:10.1016/j.foodchem.2012.01.041. [51] KIM Y H, WON Y, YANG X, et al. Green tea catechin metabolites exert immunoregulatory effects on CD4+ T cell and natural killer cell activities[J]. Journal of Agricultural and Food Chemistry, 2016,64(18): 3591-3597. DOI:10.1021/acs.jafc.6b01115. [52] MONAGAS M, KHAN N, ANDRES-LACUEVA C, et al.Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells[J]. British Journal of Nutrition,2009, 102(2): 201-206. DOI:10.1017/S0007114508162110. [53] GRIMM T, SCHATER A, HOGGER P. Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol)[J]. Free Radical Biology and Medicine,2004, 36(6): 811-822. DOI:10.1016/j.freeradbiomed.2003.12.017. [54] MENA P, GONZALEZ DE LLANO D, BRINDANI N, et al.5-(3’,4’-Dihydroxyphenyl)-γ-valerolactone and its sulphate conjugates,representative circulating metabolites of flavan-3-ols, exhibit antiadhesive activity against uropathogenic Escherichia coli in bladder epithelial cells[J]. Journal of Functional Foods, 2017, 29: 275-280.DOI:10.1016/j.jff.2016.12.035. [55] TAKAGAKI A, NANUO F. Effects of metabolites produced from(-)-epigallocatechin gallate by rat intestinal bacteria on angiotensin I-converting enzyme activity and blood pressure in spontaneously hypertensive rats[J]. Journal of Agricultural and Food Chemistry,2015, 63(37): 8262-8266. DOI:10.1021/acs.jafc.5b03676. [56] UNNO K, PERVIN M, NAKAGAWA A, et al. Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells[J]. Molecular Nutrition & Food Research, 2017, 61(12): 1-7. DOI:10.1002/mnfr.201700294. [57] TAKAGAKI A, YOSHIOKA Y, YAMASHITA Y, et al. Effects of microbial metabolites of (-)-epigallocatechin gallate on glucose uptake in L6 skeletal muscle cell and glucose tolerance in ICR mice[J]. Biological & Pharmaceutical Bulletin, 2019, 42(2): 212-221.DOI:10.1248/bpb.b18-00612.
A Review on Microbial Biotransformation of Epigallocatechin Gallate and Bioactivities of Its Metabolites DU Minru, FANG Qian’an, LIAO Zhenlin, FANG Xiang*, WANG Jie*
(College of Food Science, South China Agricultural University, Guangzhou 510642, China) Abstract: Epigallocatechin gallate (EGCG), a polyphenolic flavonoid compound isolated from tea, has many biological functions such as antioxidant, antibacterial, anti-tumor, cholesterol-lowering and anti-obesity properties. However, its instability and low bioavailability lead to limited bioactivities. Recently, biotransformation mediated by microbes may provide an effective way of modifying the structure of EGCG to improve its bioavailability while maintaining and even improving its original bioactivities. This review summarizes the biotransformation of EGCG mediated by different microorganisms and the bioactivities of its resulting breakdown products, mainly focusing on the metabolic pathways, the metabolites, and their bioactivities. It is expected that this review will provides a theoretical basis for further study aiming at the development of EGCG-based value-added products and for in-depth studies on human health promotion triggered by microbial biotransformation of polyphenols. Keywords: epigallocatechin gallate; biotransformation; microorganisms; metabolic pathways; biological activities
DOI:10.7506/spkx1002-6630-20190418-228 中图分类号:TS201.2 文献标志码:A 文章编号:1002-6630(2020)09-0204-07引文格式: 杜敏如, 房倩安, 廖振林, 等. 微生物介导的表没食子儿茶素没食子酸酯生物转化及其代谢物活性研究进展[J]. 食品科学,2020, 41(9): 204-210. DOI:10.7506/spkx1002-6630-20190418-228. http://www.spkx.net.cnDU Minru, FANG Qian’an, LIAO Zhenlin, et al. A review on microbial biotransformation of epigallocatechin gallate and bioactivities of its metabolites[J]. Food Science, 2020, 41(9): 204-210. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-20190418-228. http://www.spkx.net.cn收稿日期:2019-04-18 基金项目:国家自然科学基金青年科学基金项目(31600060);国家自然科学基金面上项目(31671855); 广州市科技计划项目一般项目专题(201904010274); 广东省科技创新战略专项资金-重点领域研发计划项目(2018B020206001) 第一作者简介:杜敏如(1988—)(ORCID: 0000-0001-5431-9189),女,硕士,研究方向为微生物学。E-mail: 466087303@qq.com*通信作者简介:
|