奥鹏作业答案 发表于 2022-3-23 09:10:59

天大2022年春季学期考试《数值计算方法》离线作业考核(手写)

数值计算方法
要求:
天津大学2022年春季学期离线考核
一、独立完成,下面已将各组题目列出,任选一组进行作答,每人只答一组题目,多答无效,100分;
二、答题步骤:
1.使用A4纸打印学院指定答题纸(答题纸请详见附件);
2.在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1.完成的作业应另存为保存类型是“Word972003”提交
2.上传文件命名为“中心学号姓名科目.doc”
3.文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!    奥鹏作业
题目如下:
第一组:
一、计算题(共100分)
1、(25分)
用GaussSeidel迭代法求解线性方程组=,
取x(0)=(000)T列表计算三次,保留三位小数。
2、(26分)
用最小二乘法求形如的经验公式拟合以下数据:
19253038
19.032.349.073.3
3、(22分)
求A、B使求积公式的代数精度尽量高并求其代数精度;利用此公式求(保留四位小数)。
4、(27分)
已知
1345
2654
分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)。
第二组:
一、计算题(共56分)
1、(28分)
设有线性方程组,其中
(1)求分解
(2)求方程组的解
(3)判断矩阵的正定性
2、(28分)
用列主元素消元法求解方程组
二、(共44分)
1、(28分)
已知方程组,其中
(1)写出该方程组的Jacobi迭代法和GaussSeidel迭代法的分量形式;
(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快。
2、(16分)
使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术?
第三组:
一、计算题(共48分)
1、(24分)
取5个等距节点,分别用复化梯形公式和复化辛普生公式计算积分的近似值(保留4位小数)。
2、(24分)
设,求
二、(共52分)
1、(30分)
已知方程组,其中

(1)列出Jacobi迭代法和GaussSeidel迭代法的分量形式;
(2)讨论上述两种迭代法的收敛性。
2、(22分)
数值积分公式,是否为插值型求积公式,为什么?又该公式的代数精度是多少?
第四组:
一、简述题(共50分)
1、(28分)
已知方程组,其中

列出Jacobi迭代和GaussSeidel迭代法的分量形式。求出Jacobi迭代矩阵的谱半径。
2、(22分)
用牛顿法求方程在之间的近似根
(1)请指出为什么初值应取2?
(2)请用牛顿法求出近似根,精确到0.0001。
二、计算题(29分)
用反幂法求矩阵的对应于特征值的特征向量
三、分析题(21分)

(1)写出解的牛顿迭代格式
(2)证明此迭代格式是线性收敛的
第五组:
一、计算题(共76分)
1、(22分)用高斯消元法求解下列方程组
2、(31分)
用雅可比方法求矩阵的特征值和特征向量
3、(23分)
求过点(1,2),(10)(3,6),(43)的三次插值多项式
二、简述题(24分)
写出梯形公式和辛卜生公式,并用来分别计算积分

本内容由易百教育整理发布
页: [1]
查看完整版本: 天大2022年春季学期考试《数值计算方法》离线作业考核(手写)