奥鹏网院作业 发表于 2021-2-24 16:35:59

基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化

基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化戴宇樵1,2,吕才有1,何鲁南1,易超1,刘学艳1,黄雯1,陈加敏1(1云南农业大学龙润普洱茶学院,昆明 650201;2贵州省茶叶研究所,贵阳 550006)摘要:【目的】基于代谢组学的超高相液相色谱/质谱(LC-MS)联用技术探究云南大叶种‘云抗10号’晒青茶加工过程中代谢产物的变化,发现影响晒青茶品质形成的标志性代谢物,并进一步研究这些物质的变化路径,为了解云南晒青茶品质形成机理奠定基础。【方法】在制作‘云抗10号’晒青茶过程中,取‘云抗10号’鲜叶、揉捻叶、晒青叶各3组。样品经预处理后,运用LC-MS检测3组样品中的代谢产物,利用质谱数据库对其定性。运用多元统计方法主成分分析(principal component analysis,PCA)和偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)对3组样品检测数据进行分析。通过PLS-DA方法筛选差异显著的代谢物。【结果】建立了‘云抗10号’鲜叶、揉捻叶和晒青叶的代谢物谱的LC/MS分析方法,将代谢组数据进行主成分分析和偏最小二乘法判别分析,并将3组样品聚类区分。并用LC-MS技术对‘云抗10号’晒青茶及在制茶进行检测,结合多元统计分析,在鲜叶、揉捻叶、晒青叶之间发现差异代谢物701种,揉捻叶与鲜叶的差异显著代谢物116种,晒青叶与鲜叶的差异显著代谢物158种,晒青叶与揉捻叶的差异显著代谢物48种。比对KEGG与MWDB数据库分析代谢物,这些代谢物主要与氨基酸及其衍生物代谢、多酚物质代谢等代谢途径有关。【结论】利用LC-MS技术可以有效地对鲜叶组、揉捻叶组与晒青叶组进行区分,证明代谢组学技术在一定程度上可以揭示晒青毛茶在加工过程中内含代谢物的化学变化规律。研究发现的晒青毛茶品质形成关键代谢物,可为晒青品质的评价指标体系建立提供理论依据。关键词:LC-MS;晒青茶;云抗10号;代谢组学;代谢物0 引言【研究意义】普洱茶的原料是云南大叶种晒青茶。晒青毛茶是将云南大叶种茶树鲜叶经过摊放、杀青、揉捻、日晒干燥制成的初加工茶,其中“日晒”这一过程对晒青茶独特品质特征的形成至关重要。传统工艺的重要性不能只是体现在普洱茶成品的风味上,还需要从更深度的机理方面去探究,了解云南大叶种晒青毛茶在晒青过程中内含物质的变化,是探索晒青茶品质形成的重要途径。【前人研究进展】随着饮茶的生活习惯在人们日常生活中越来越普及,消费者对茶叶的食品安全与品质要求逐渐提高。随着科学检测技术的进步,检测茶叶各方面指标的方法也开始增多,从而能更好地提高茶叶品质。植物代谢组学指在特定的生理时间内,对某一植物组织或细胞的所有低分子量的代谢产物进行定性定量分析。目前已有的代谢组学分析技术主要为气相色谱质谱联用、高效液相色谱质谱联用、核磁共振、毛细血管电泳技术等。代谢组学技术已被广泛应用于茶产业的多个环节中,可以用来更全面地了解茶叶从种植、加工、饮用过程中内含物质的变化规律,从而揭示茶叶特殊风味的形成原理。茶叶加工对茶叶品质形成来说是一项重要环节,但要探索茶叶生产工艺与品质的关系,常规检测还不够全面与深入。利用代谢组学技术可以进一步探索茶叶加工过程中的物质变化。研究证明,运用近红外光谱分析方法对武夷岩茶生产过程中的实际在线检测应用是可行的。并且代谢组学技术能较全面地探究茶叶中特殊内含物变化规律,如花青素、生物胺的变化规律。运用LC-MS可对普洱茶的风味化合物、抗氧化活性以及储存年份进行鉴定,也可通过对白茶内含物的鉴定对白茶品质进行分级。通过研究不同山头普洱生茶的差异代谢物,运用1H-NMR方法为普洱茶的品质评价找到新思路。目前,HPLC、NMR等方法都能进行快速准确且具有深度的茶叶内含物质测定。GC-MS是目前最准确、最全面的茶叶香气检测方法。试验证明HS-SPME/GC-MS技术能较好地鉴定茶叶中的挥发性风味物质。【本研究切入点】云南大叶种‘云抗10号’是云南省农业科学院茶叶研究所用单株育种法得到的品种,属于乔木型茶树,具有产量高、品质优、抗逆性强、适应性广的特点,是云南省茶产业的主力军,常用来制作云南绿毛茶、红茶等,用该品种制作成的晒青毛茶品质具有一定的代表性。目前,关于普洱茶原料云南大叶种晒青茶的各方面研究都相对较少,探究晒青茶品质形成原因的研究更加薄弱。【拟解决的关键问题】以LC-MS为研究手段,选取具有代表性的云南大叶种‘云抗10号’作为原料,探究从鲜叶采摘到晒青茶制成过程中内含成分的变化规律,为晒青茶的品质形成机理与优化普洱茶加工工艺与品质提供参考。2.4.2 精密度试验 取供试品溶液(S16),连续进样6次,考察色谱峰保留时间的一致性,10个特征峰保留时间RSD小于0.02%,峰面积RSD小于1.10%。同时考察各色谱峰的相似度,用相似度评价软件计算,测得的色谱指纹图谱与其所得的共有模式图的相似度均为0.985,表明仪器稳定,精密度良好。 1 材料与方法试验于2018年11—12月在云南农业大学龙润普洱茶学院加工实验室进行。1.1 试验材料与仪器试剂:乙醇、甲醇、乙腈(Mecrk)标准品:二甲基亚砜(DMSO)或甲醇作为溶剂溶解后,-20℃保存,质谱分析前用70%甲醇稀释成合适浓度(BioBioPha,Sigma-Aldrich),均为色谱纯。仪器:离心机(5424R 2 Eppendorf)(艾本德中国有限公司),真空冷冻干燥机(Labconco Freezone 2.5L-84),研磨机(MM 400,Retsch(德国RETSCH)),电炒锅(6CCH-63型,富阳市叶峰茶叶机械设备),超高效液相色谱(UPLC)(Shim-pack UFLC SHIMADZU CBM30A)和串联质谱(MS/MS)(Applied Biosystems 6500 QTRAP)。以往的河道整治工程主要是通过三个方面对河道加以影响和作用。一是采用固化的方式,通过固定边岸的方法影响河流的流势。二是控制水流的方式,影响河道上游与下游水势的变化。三是通过几何断面设计的方式,利用河流冲击形成自然的断面。护岸材料的铺设会影响河道自然变化;改变河道的形态及坡度虽然利于航运的进行,但限制了水体生物的物质传导;断面的几何设计改变了河岸的断面结构以至于改变了水体生物生存的环境及它们的食物来源。 1.2 试验方法通过对样本(包括质控样品)的主成分分析,初步了解各组样本之间的总体代谢差异和组内样本之间的变异度大小。其中MIX即上方提到的质控样本,PCA得分图如下(图1)。在PCA图中,图上任意一点表示一个对应样本。从图中可以看出LC-MS分析所得原始数据在PC1、PC2两种主成分中得到良好地呈现。在图中,第一主成分的贡献率为31.36%,第二主成分的贡献率为29.19%,两种主成分的贡献率和为60.55%,代表两个主成分能够基本反映茶样的主要特征信息。同时各组样品与质控样品质谱数据的PCA得分图在图上可见(图2),左图为不同主成分累计比例图,右图为不同主成分方差比例,每一点代表PC1至PC5,在左图中,PC1对应点与右图PC1对应点一致,PC2对应点纵坐标值为右图中PC1贡献率与PC2贡献率之和,PC3对应点纵坐标值为右图中PC1、PC2、PC3贡献率之和,以此类推,左图中PC5对应纵坐标值越接近于1,表示该PCA模型越具有可靠性,右图中可看出主成分贡献率比较为PC1>PC2>PC3>PC4>PC5,由此也说明选取PC1、PC2来分析样本具有较好可靠性。从3组样品的聚类热图分析(图3)上看出,3组样本区别明显,组内平行样本成分接近,证明样本的可靠性。地点:云南普洱茶树良种场流程:鲜叶(一芽二叶(55%)、一芽三叶(45%))摊青、杀青、手工揉捻、日光干燥。1.2.2 样品预处理 选取‘云抗10号’加工过程中鲜叶(YK10-1)、揉捻叶(YK10-2)、晒青叶(YK10-3)各3份;样品真空冷冻干燥;研磨仪(MM 400,Retsch)研磨(30 Hz,1.5 min)至粉末状;称100 mg粉末溶于1.0 mL的提取液中;保存于4℃冰箱,过夜,涡旋3次提高提取率;离心(转速10 000×g,10 min)后,取上清液,微孔滤膜(0.22 μm)过滤,然后进行LC-MS/MS分析。1.2.3 LC-MS分析条件超高效液相色谱(UPLC)和串联质谱(MS/MS)。1.2.1 样品的制作 质谱条件主要包括:电喷雾离子源,温度500℃,质谱电压5 500 V,帘气25 psi,碰撞诱导电离,参数设置为高。在三重四级杆中,每个离子对根据优化的去簇电压(DP)和碰撞能(CE)进行扫描检测。1.2.4 数据分析 采用多元统计分析,基于OPLS-DA结果,从多变量分析OPLS-DA模型的变量重要性投影(variable importance in project,VIP)中初步筛选出不同样品间差异代谢物,再通过组合单变量分析的P值或差异倍数值来进一步筛选差异代谢物。本试验中存在生物学重复,通过fold change和OPLS-DA模型的VIP值相结合的方法来筛选差异代谢物。筛选标准:选取fold change≥2(上调)和fold change≤0.5(下调)的代谢物。在上述基础上,选取VIP≥1的代谢物,VIP值表示对应代谢物的组间差异在模型中各组样本分类判别中的影响强度,一般认为VIP≥1的代谢物为差异显著。基于商业数据库MWDB(metware database)及代谢物信息公共数据库,利用三重四级杆质谱的多反应监测模式(MRM)分析完成代谢物定性。在获得不同样品的代谢物质谱数据后,对所有物质的质谱峰进行峰面积积分,并对不同样品的相同代谢物质谱进行积分校正。由于自然条件的影响,水利水电工程项目的施工现场多处于偏僻地区,交通不便成为工程项目建设面临的普遍问题,工程项目建设需要耗费大量建设资源,建设资源的运输可能对施工技术应用、施工进度造成不良影响。 2 结果2.1 主成分分析液相条件:色谱柱:Waters ACQUITY UPLC HSS T3 C18;流动相:水相,超纯水(加入0.04%乙酸),有机相,乙腈(加入0.04%乙酸);洗脱梯度:0 min为水/乙腈(95﹕5(V/V)),11.0 min为5﹕95(V/V),12.0 min为5﹕95 V/V,12.1 min为95﹕5 V/V,15.0 min为95﹕5 V/V;流速0.4 mL∙min-1;柱温40℃;进样量2 μL。策略:平面镜所成像与物体大小相等,关于平面镜对称,利用数学上的“对称法”作图,注意像与辅助线用虚线表示。 为了鉴别出具体有哪些差异代谢物造成了分离现象,建立‘云抗10号’鲜叶与揉捻叶之间、鲜叶与晒青叶之间、揉捻叶与晒青叶之间的3组PLS-DA模型。模型S图如图4所示,S图能表示每个代谢物对于分组的贡献率。横坐标为可变量,数据离原点越远,该点对样品的组间分离贡献越大;纵坐标为样本之间的相关性,数据离原点越远,样本间的相关性越好。表1为模型评价参数,在这3组模型中,其中两组R2Y和Q2的值均大于0.9(表1),其余一组R2Y与Q2值均大于0.3,说明这3组模型构建良好,预测性可靠。http://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/3aefe23c042ef41ef01a9fd3fa1a99b5.png    图1 各组样品与质控样品质谱数据的PCA得分图Fig. 1 PCA score map of mass spectrometry data of each group of samples and quality control sampleshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/06796ec6639cc2ba4b612017b9a52b1b.png    图2 分组主成分分析可解释变异图Fig. 2 Variation map based on group principal component analysishttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/1296989effe3ab7f194d2f5a2b209674.png    图3 样品总体聚类图Fig. 3 Sample overall clustering map表1 PLS分析的参数Table 1 Parameters of PLS analysishttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/1dacd2c17f7f34b0d0bf448c03ec6f47.jpg&q=30    样品Tea sampleR2XR2YQ2 YK10-1_vs_YK10-20.5140.9960.923 YK10-1_vs_YK10-30.5470.9970.937 YK10-2_vs_YK10-30.3770.9860.778
2.2 差异代谢物筛选通过PLS-DA分析后,根据VIP值>1与上调代谢物fold change≥2和下调代谢物fold change≤0.5以及T检验的相对变量分析结果筛选出显著差异代谢物。在‘云抗10号’晒青茶的加工中,将其鲜叶、揉捻叶、晒青叶进行分组,由图5—7可看出鲜叶与揉捻叶差异代谢物116种、鲜叶与晒青叶差异代谢物158种,揉捻叶与晒青叶差异代谢物42种。统计出这3组对比的总差异代谢物180种,对总差异代谢物差异倍数值(FC)进行归一化处理,从图8中可以看出3组对比FC值部分区分良好,差异代谢物种类区别明显。从表2可看出,总差异代谢物的物质种类与相对含量变化情况。在3组对比中均为差异代谢物的物质有8种,分别有上调差异代谢物异樱花亭,5-尿嘧啶核苷酸(5-UMP),6-C-己糖基-金圣草黄素O-己糖苷、7-甲基鸟嘌呤、白杨素C-己糖苷,磷脂酰胆碱酰基16﹕1/14﹕1,咖啡醛在揉捻过程中相对含量下降,可在晒青过程中显著上升,最终的变化趋势表现为上升,下调差异显著代谢物有萜类物质植保素D,黄酮碳糖苷物质C-己糖苷-异鼠李素O-己糖苷。2.3 茶叶中特殊成分的变化规律茶叶中有效活性成分种类丰富,本研究主要探讨儿茶素类、黄酮类、氨基酸、生物碱类物质的相对含量变化规律。儿茶素类是茶叶中重要的活性物质,在本次检测中,所有的儿茶素类物质从鲜叶到晒青叶的变化规律如表3所示,共检测到儿茶素类14种,其中有71%呈下调趋势,其余呈上调趋势。且酯型儿茶素含量都呈显著下降的。作为一种思维方式,人类命运共同体倡导关系逻辑,能够推动统一战线构建和谐关系,增强合力与向心力。作为一种价值观念,人类命运共同体强调伦理导向,能够为统一战线提供价值指引,赋予其强烈的使命感和责任感。作为一种处世哲学,人类命运共同体主张兼容并蓄,能够进一步扩大统一战线的基础,强化其多元一致的基本特征。 http://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/42acc22b1473f035ffea5a1dd68792a6.png    图中红色表示VIP≥1的代谢物,绿色表示VIP<1的代谢物 Red represents the metabolites with VIP≥1, and green represents the metabolites with VIP<1图4 组间OPLS-DA S点图Fig. 4 OPLS-DAS-plot between two groups对于黄酮与黄酮醇物质,选取其中晒青叶与鲜叶相对比VIP≥1的黄酮类差异代谢物,列出3组样品中含量变化。从表4可以看出,槲皮素,山奈酚、丁香亭、白杨素等物质的含量整体上呈大幅度增加趋势,在差异显著的黄酮类代谢物中仅有异鼠李素-3-O-新橙皮糖苷与芹菜素7-O-新橘皮糖苷(野漆树苷)呈下调模式。对于氨基酸及其衍生物类,选取其中晒青叶与鲜叶相对比VIP≥1的氨基酸类差异代谢物,列出3组样品中的含量变化,从表5中可以看出茶叶中含有多种氨基酸,其中鲜叶中含量最多的是茶氨酸,本研究中检测到茶氨酸随着加工过程的进行其含量显著下降。本研究共检测到8种生物碱物质,且影响茶叶风味的关键代谢物咖啡碱相对含量呈下调趋势(表6)。3 讨论本研究中,儿茶素类从鲜叶到晒青叶明显下降,可能是因为儿茶素性质不稳定,容易被多酚氧化酶氧化。当鲜叶经过摊青后,在失水与杀青的高温作用下,其中的儿茶素可转变为它对应的旋光异构体或顺反异构体。儿茶素还可以发生聚合反应形成原花青素与花青素,这两种物质在本次反应中也被检测到。同时,儿茶素类物质还可以与其他活泼的化合物(如多酚类物质、维生素、茶氨酸等)发生聚合反应。茶氨酸含量也发生了显著下降,原因也可能是参与上述聚合反应形成的。而咖啡酰原儿茶酸、原儿茶醛、4-甲基儿茶酚、二没食子儿茶素这4种上调物质,有可能是由于儿茶素内部发生了聚合反应,导致其中的咖啡酰原儿茶酸的含量明显提升。也可能是与最终晒青过程中日光催化茶叶中的活性成分发生了反应,并且下调代谢物(ECG、EGCG与三儿茶素)含量在揉捻叶中含量最多,在晒青叶中含量又降低,表明这些物质在从鲜叶到揉捻叶的过程中遭到高温的破坏,又在揉捻过程中反应增多,最后在日光催化下转变为其他物质。http://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/3a3be67a83732d9a939f74eaf9fd7657.png    图中一个点表示一种代谢物,横坐标为代谢物在两样品中定量差异倍数对数值,纵坐标为VIP值。绿点为下调差异表达代谢物,红点为上调差异表达代谢物,灰色部分为检测到但差异不显著的代谢物。下同A point in the figure represents a metabolite, the abscissa is the value of the multiple logarithm of the quantitative difference between the two samples, and the ordinate is the VIP value. The green dot is the down-regulated differential expression metabolite, the red dot is the up-regulated differential expression metabolite, and the gray part is the detected but the difference is not significant. The same as below图5 YK10-1_vs_YK10-2 差异代谢物火山图Fig. 5 YK10-1_vs_YK10-2 differential metabolite volcano maphttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/9a7b4eeaef62c720b310218e70ebfc15.png    图6 YK10-1_vs_YK10-3差异代谢物火山图Fig. 6 YK10-1_vs_YK10-3 differential metabolite volcano maphttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/831fb1529e411ec3dfc5c20c6f280fb2.png    图7 YK10-2_vs_YK10-3差异代谢物火山图Fig. 7 YK10-2_vs_YK10-3 differential metabolite volcano maphttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/4ba1c99d7ca0f54316476a60ee582e52.png    图8 3组处理对比FC值聚类热图Fig. 8 Comparison of FC value clustering heat map between the three groups表2 差异代谢物种类与变化情况Table 2 SpeciesTypes and changes of different metaboliteshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/b0855a779649cbb106c6cc06eba7fedf.jpg&q=30    序号No.代谢物种类Species of metabolites总数Amount上调数量Increase the number下调数量Reduce the number 1脂质类Lipids44377 2氨基酸及其衍生物Amino acid and its derivatives27234 3黄酮类Flavone25196 4核苷酸及其衍生物Nucleotide and its derivates18180 5苯甲酸及其衍生物Benzoic acid and its derivatives651 6羟基肉桂酰衍生物Hydroxycinnamoyl derivatives1183 7有机酸及其衍生物Organic acids15105 8维生素Vitamins422 9儿茶素及其衍生物Catechin and its derivatives110 10花青素Anthocyanins202 11生物碱Alkaloids110 12胆碱类Cholines321 13酚胺Phenolamides330 14糖类Carbohydrates220 15萜类Terpenoids101 16吡啶Pyridine derivatives110 17奎宁酸及其衍生物Quinate and its derivatives211 18香豆素及其衍生物Coumarins330 19色胺及其衍生物Tryptamine derivatives101
表3 鲜叶、揉捻叶和晒青叶组间儿茶素类代谢物差异Table 3 Differences in catechin metabolites between fresh leaves, rolling leaves and sun-dried leaveshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/aefcf3a5d7a1e6ed781c16a785658fad.jpg&q=30    序号No.保留时间Retention time (min)代谢物MetabolitesYK10-1YK10-2YK10-3类型Type 12.53咖啡酰原儿茶酸Protocatechuic acid O-glucoside1050333.33±217647.276006666.67±575528.749486666.67±5827661.05上调 Up 23.05原儿茶醛Protocatechuic aldehyde55100±710072833.33±3499.05101300±7291.78上调 Up 34.024-甲基儿茶酚4-Methylcatechol15433.33±1767.3024200±3143.2524633.33±1703.92上调 Up 42.38二没食子儿茶素Gallocatechin-gallocatechin529666.67±85242.79590000±43347.43582000±71021.12上调 Up 53.49没食子儿茶素-儿茶素Gallocatechin-catechin6836.67±1506.404870±1384.592560±2470.49下调 Down 62.3原儿茶酸Protocatechuic acid194000±15394.80196666.67±26764.40123900±41179.24下调 Down 73.51三儿茶素Catechin-catechin-catechin3713333.33±385010.823863333.33±346458.273073333.33±213853.53下调 Down 83.45表儿茶素表阿夫儿茶精Epicatechin-epiafzelechin281000±22869.19281666.67±54811.80253000±26000下调 Down 92.99儿茶素Catechin3960000±240208.243890000±208086.523650000±715821.21下调 Down 102.44没食子儿茶素(+)-Gallocatechin (GC)1576666.67±63508.531376666.67±56862.411470000±78102.50下调 Down 112.53表没食子酸儿茶素Epigallocatechin (EGC)1500000±800001313333.33±50332.231400000±52915.03下调 Down 123.18表儿茶素L-Epicatechin3306666.67±117189.313316666.67±138684.293146666.67±565803.26下调 Down 133.28表没食子酸儿茶素没食子酸酯Epigallate catechin gallate (EGCG)3886666.67±210792.164140000±186815.423766666.67±213853.53下调 Down 143.83表儿茶素没食子酸Epicatechin gallate (ECG)15666666.67±808290.3815900000±529150.2615300000±608276.25下调Down
表4 鲜叶、揉捻叶和晒青叶组间黄酮与黄酮醇类代谢物差异Table 4 Differences between flavonoids and flavonols in fresh leaves, rolling leaves and sun-leaf leaveshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/ff1ddd852ea0617d0599057cc6c1713a.jpg&q=30    序号No.保留时间Retention time (min)物质MetabolitesYK10-1YK10-2YK10-3类型Type 16.73白杨素Chrysin0±0.008880±782.3714883.33±5566.49上调 Up 2330.2丁香亭Syringetin4490±1406.8417366.67±782.3733666.67±12483.72上调 Up 35.08槲皮素Quercetin3046666.67±336501.6110096666.67±505008.2513400000±1907878.40上调 Up 45.08桑色素水合物Morin2883333.33±361155.559653333.33±609289.2012400000±1708800.75上调 Up 54.58二氢山奈酚Aromadedrin (Dihydrokaempferol)978666.67±132673.793026666.67±206478.413600000±170880.07上调 Up 65.69山奈酚Kaempferol3753333.33±480555.2310603333.33±1347973.7912543333.33±3894051.02上调 Up 75.73金圣草(黄)素Chrysoeriol369666.67±37581.02939666.67±42770.711196666.67±90737.72上调 Up 85.81异鼠李素Isorhamnetin12453.33±3177.1914000000±1708800.7537733.33±5131.60上调 Up 95.863,7-二氧-甲基槲皮素Di-O-methylquercetin136666.67±30022.21249666.67±19655.36353000±17435.60上调 Up 106.98金合欢素Acacetin12046.67±2802.59240000±20297.7829700±2600上调 Up 115.62芹菜素Apigenin504666.67±72507.47829333.33±64002.601234666.67±390800.89上调 Up 127.23毡毛美洲茶素Velutin1983.33±221.895923.33±2653.724543.33±320.36上调 Up 137.17华良姜素Kumatakenin13866.67±1193.0446366.67±27164.3830333.33±1858.31上调 Up 143.54异鼠李素-3-O-新橙皮糖苷Isorhamnetin 3-O-neohesperidoside519666.67±198807.28303333.33±51964.73216333.33±62043.00下调 Down 154.02芹菜素 7-O-新橘皮糖苷(野漆树苷)Apigenin 7-O-neohesperidoside (Rhoifolin)15966666.67±3807011.0810786666.67±920072.466953333.33±1276727.59下调 Down
表5 鲜叶、揉捻叶和晒青叶组间氨基酸及其衍生物类代谢物差异Table 5 Metabolites of amino acids and their derivatives between fresh leaves, rolling leaves and sun-dried leaveshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/92d2dcd113cd69a32e9db45d1d0d1713.jpg&q=30    序号No.保留时间Retention time (min)物质MetabolitesYK10-1YK10-2YK10-3类型Type 10.79天门冬氨酸二葡糖苷Aspartic acid di-O-glucoside567000±310002093333.33±218250.622993333.33±685298.00上调 Up 21.24L-亮氨酸Aspartic acid di-O-glucoside192000±27874.721002666.67±33842.77990333.33±37287.17上调 Up 31.14L-(-)-酪氨酸L-(-)-Tyrosine867000±70149.843750000±193132.0784370000±167032.93上调 Up 41.23L-异亮氨酸L-Isoleucine103766.67±17417.33499333.33±21501.94500000±15394.80up 51.97L-苯丙氨酸L-Phenylalanine528000±39949.972470000±115325.632420000±115325.63上调Up 60.82-氨基己二酸 (L-高谷氨酸)2-Aminoadipic acid (L-Homoglutamic acid)330000±11357.821270000±155241.751420000±36055.51上调 Up 70.84缬氨酸Dl-Norvaline8706666.67±428524.6035466666.67±3720663.0234933333.33±1871719.35上调 Up 80.84L-缬氨酸L-Valine1953333.33±132035.357136666.67±828573.077423333.33±460470.77上调 Up 90.71L-酵母氨酸L-Saccharopine181000±16522.71773333.33±61174.61667333.33±122964.76上调 Up 100.68L-(+)-赖氨酸L-(+)-Lysine8870000±478852.8031666666.67±642910.0531300000±3122499.00上调 Up 110.81DL-高半胱氨酸DL-homocysteine139333.33±11015.14461333.33±47077.95479333.33±25696.95上调 Up 续表5 Continued table 5 序号No.保留时间Retention time (min)物质MetabolitesYK10-1YK10-2YK10-3类型Type 121.21DL-多巴3,4-Dihydroxy-DL-phenylalanine4706.67±2740.5514033.33±3362.0415800±4253.23上调 Up 130.65蛋氨酸亚砜Methionine sulfoxide152333.33±25658.01639000±11135.53507000±37643.06上调 Up 140.72L-谷氨酸O-己糖苷L-Glutamic acid O-glucoside43066.67±3027.1062033.33±13041.60140333.33±5131.60上调 Up 150.73L-天冬酰胺L-Asparagine126666.67±16258.33420333.33±73493.76407666.67±48675.80上调 Up 161.24S-甲基谷胱甘肽S-(methyl) glutathione6613.33±2116.638910±2098.3619900±2128.38上调 Up 170.74同型丝氨酸L-Homoserine12933.33±2967.0426400±3751.0038800±5350.70上调 Up 180.68L-组氨酸L-Histidine1153333.33±76376.263736666.67±265015.723280000±360555.13上调 Up 193.52L-苯丙氨酸-L-苯丙氨酸Phe-Phe42533.33±7850.05144333.33±109433.33±25162.74上调 Up 200.77L-(-)-胱氨酸L-(-)-Cystine30866.67±11184.0724200±7937.8869866.67±14216.31上调 Up 212.05N′-甲酰基犬尿氨酸N′-Formylkynurenine705333.33±111540.73612333.33±25890.801593333.33±56862.41上调 Up 220.81高胱氨酸L-Homocystine1593333.33±3646.0051466.67±17333.8861366.67±9022.38上调 Up 231.93N-甘氨酰-L-亮氨酸N-Glycyl-L-leucine32666.67±2668.9678633.33±5641.2267333.33±6493.33上调 Up 241.14谷胱甘肽还原型Glutathione reduced form135733.33±92073.96447000±303605.0134066.67±12702.10下调 Down 250.742-氨基异丁酸2-Aminoisobutyric acid64700000±4853864.4423033333.33±1331665.6225333333.33±2683902.63下调 Down 262.43N-乙酰基蛋氨酸N-Acetylmethionine147233.33±46476.48111666.67±9712.5366400±2066.40下调 Down 270.99L-茶氨酸L-Theanine3820000±1373564600000±558748.604490000±331763上调 Up 280.77γ-氨基丁酸γ-aminobutyric acid1903333.33±295014.135510000±508625.605783333.33±508625.60下调 Down
表6 鲜叶、揉捻叶和晒青叶组间生物碱代谢物差异Table 6 Differences in alkaloid metabolites between fresh leaves, rolling leaves and sun-dried leaveshttp://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/8bd4e3cb7a748d387dfb4d3302f4b992.jpg&q=30    序号No.保留时间Retention time (min)物质MetaboliteYK10-1YK10-2YK10-3类型Type 11.16哌啶Piperidine5443333.33±494098.5119800000±1873499.418500000±781024.97上调 Up 20.79葫芦巴碱Trigonelline164666.67±54993.94318000±125391.39308666.67±112669.13上调 Up 30.78甜菜碱Betaine13733333.33±929157.3217566666.67±1833939.2924300000±12931743.89上调 Up 42.64茶碱Theophylline6455066.67±578935.037286366.67±194360.46545566.67±1001309.43上调 Up 51.45大麦芽碱Hordenine417333.33±33246.55472333.33±66905.41391000±34655.45下调 Down 63.14咖啡碱Caffeine6883000±232758.276826466.67±97485.616241100±380824.22下调 Down 74.64异喹啉Isoquinoline112366.67±24056.25119466.67±28075.8588566.67±3442.87下调 Down 82.38可可碱Theobromine7260000±401497.26323333.33±230289.675460000±326955.65下调 Down
本研究中部分黄酮类物质在‘云抗10号’鲜叶中含量相对较低,然而经过高温杀青后,黄酮苷遇热发生水解,苷类配基脱去,转化黄酮或黄酮醇,可使苷类物质的苦味降低,这可能也是部分黄酮类物质上调的原因。然而在光的作用下黄酮也会分解,也就造成了部分黄酮含量的下降。茶氨酸从鲜叶到揉捻叶表现为上升,然而从揉捻叶到晒青叶其含量表现为下降,总趋势为上调,但其中下降这一表现与前人研究的氨基酸变化规律相符。在杀青过程中,大量叶绿素遇热导致大量叶绿素蛋白降解,形成大量游离氨基酸。在晒青过程中,茶氨酸含量显著降低可能是因为茶氨酸在日晒作用下易降解为谷氨酸和乙酰胺,同时茶氨酸被酶氧化,与儿茶素形成茶色素,但总体趋势的上升或许是因为茶氨酸的耐热耐酸性,使其在高温杀青与机械作用中未被破坏。对于递减的氨基酸或许是因为在高温杀青的过程中,氨基酸类与碳水化合物发生美拉德反应生成黑色素并产生特殊的香味。其余大部分氨基酸相对含量均表现出递增,包括γ-氨基丁酸。由此可见,在晒青茶中,茶叶中氨基酸类物质大部分被很好的保留下来,使晒青茶具有独特鲜爽的滋味与良好的保健功效。本研究共检测到8种生物碱物质,其中甜菜碱相对含量最高,甜菜碱的学名为三甲基甘氨酸,参与渗透调节,与植物抗逆性相关,且外用具有护肤功效。前人研究主要关注的咖啡碱、茶叶碱、可可碱也被检测出,咖啡碱相对含量在鲜叶到揉捻叶再到晒青叶的加工过程中相对含量均下降,这与前人的研究结果相符。咖啡碱具有苦味,且在后期加工过程中可与茶黄素以氢键缔合形成具有鲜爽味的复合物,可可碱相对含量在两个品种中也均表现为下降,茶叶碱相对含量却在晒青过程中增多并高于鲜叶中的含量。在今后的研究工作中,将进一步找到多种关键物质的变化途径,研究其他品种晒青茶加工过程中的成分变化,与工艺相结合,探讨加工过程中部分重要成分的转化产物,更加深入地掌握晒青毛茶品质形成的机理。基于此,本文将借鉴法国在乡村旅游发展中“乡愁—乡居—乡思“的实践体现,探讨我国乡村旅游可持续发展的动力机制。 4 结论本研究运用超高效液相色谱和质谱联用的方法,对云南大叶种‘云抗10号’晒青毛茶及其制茶过程中的代谢物进行了分析,发现此品种晒青茶在制作过程中内含成分产生显著变化,且检测到在平时茶叶研究中关注较少的物质相对含量变化十分显著,如核苷酸及其衍生物、维生素、脂质、苯甲酸衍生物等多种代谢物。这表明在晒青毛茶加工中的摊青、杀青、揉捻、日光干燥过程中,除了儿茶素、黄酮类与氨基酸以及衍生物与生物碱发生较大变化外,许多其他代谢物也受到高温、氧化、物理机械等作用而发生反应。2.目前相关法律法规中存在的问题。总体来说,我国现有的与转基因产品标识制度相关的立法主要有:一部法律、一部行政法规、四部部门规章、一条国家标准。虽然法律法规不少,但其中也存在很大的问题。一是缺少专门的立法,并且法律法规位阶不高。根据我们对现有法律法规的梳理可以发现,对于转基因产品标识制度相关的法律只有《中华人民共和国食品安全法》,而法规方面,位阶稍高的《农产品质量安全法》也只是规定属于农业转基因生物的农产品,应当按照农业转基因生物安全管理的有关规定进行标识。这两部法律法规都很笼统,而没有专门详细的规定,使得我国目前关于转基因产品标识方面没有专门的立法,对转基因产品的管理缺少法律支持。 References GB/T 22111普洱茶, 2008.GB/T 22111 Pu'er Tea , 2008. (in Chinese) 董登峰. 代谢物组学方法及其在植物学研究中的应用. 广西植物, 2007, 27(5): 765-769.Dong D F. Metabolomic methods and their applications in botanical research. Guangxi Plant, 2007, 27(5): 765-769. (in Chinese) 赵峰, 林河通, 杨江帆, 叶乃兴, 俞金朋. 基于近红外光谱的武夷岩茶品质成分在线检测. 农业工程学报, 2014, 30(2): 269-277.Zhao F, Lin H T, Yang J F, Ye N X, Yu J P. Online quantitative determination of Wuyi Rock Tea quality compounds by near infrared spectroscopy. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 269-277. (in Chinese) 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究. 合肥: 安徽农业大学, 2012.Wang X M. Metabolic spectrum analysis and quality formation mechanism of Tuen Mun black tea during processing . Hefei: Anhui Agricultural University, 2012. (in Chinese) 解东超, 戴伟东, 李朋亮, 谭俊峰, 林智. 基于LC-MS的紫娟烘青绿茶加工过程中花青素变化规律研究. 茶叶科学, 2016, 36(6): 603-612. Xie D C, Dai W D, Li P L, Tan J F, Lin Z. Study on the compositions and dynamic changes of anthocyanins during the manufacturing process of ‘Zijuan’ baked green tea. Journal of Tea Science,2016, 36(6): 603-612. (in Chinese) 米雨荷. 茶叶中生物胺UPLC检测方法的建立及加工工艺对其含量的影响. 南京: 南京农业大学, 2016.Mi Y H. Establishment of UPLC detection method for tea and determination of its processing content . Nanjing: Nanjing Agricultural University, 2016. (in Chinese) 伍岗, 夏锐, 张艳梅, 梁家彬, 李梅, 浦绍柳. SPME-GC-MS测定4种云南茶的香气成分. 西南农业学报, 2016, 29(8): 1993-1997.Wu G, Xia R, Zhang Y M, Liang J B, Li M, Pu S L. Analysis of aromatic components in four kinds of Yunnan tea by SPME-GC-MS. Southwest China Journal of Agricultural Sciences, 2016, 29(8): 1993-1997. (in Chinese) Li Z Y, Feng C X, Luo X G, Yao H L, Zhang D C, Zhang T C. Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiology, 2018, 76: 405-415. Ku K m, Kim J y, Park H j, Liu K h, Lee C h. Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year. Journal of Agricultural and Food Chemistry, 2010, 58: 345-352. Yue W J, Sun W J, Rao R S P, YE N X, YANG Z B, CHEN M J. Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea. Food Chemistry, 2018, 277: 289-297. Zhao F, Qiu X h, Ye N x, Qian j, wang d h, zhou p, chen m j. Hydrophilic interaction liquid chromatography coupled with quadrupoleorbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process. Food Chemistry, 2018, 266: 343-349. Wang T, Li X l, yang h c, wang f, kong j p, qiu d, li z. Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Food Chemistry, 2018, 268: 271-278. 郑起帆. 基于~1H-NMR的四个茶山普洱生茶代谢组学研究. 广州: 广东药科大学, 2016.Zheng Q F. Metabolomics study of four tea mountain Pu'er tea based on ~1H-NMR . Guangzhou: Guangdong Pharmaceutical University, 2016. (in Chinese) 刘洪林, 童华荣. 高效液相色谱法同时测定工夫红茶中10种内含物成分. 食品科学, 2016, 37(8): 97-101.Liu H L, Tong H R. Determination of ten inclusions in Gongfu Black tea by HPLC. Food Science, 2016, 37(8): 97-101. (in Chinese) 孟怡璠, 杜欢欢, 江海, 耿敬章. UPLC-MS-MS测定红茶中的茶黄素含量. 农业技术与装备, 2017(7): 9-12, 14.Meng Y P, Du H H, Jiang H, geng J Z. Determination of theaflavin content in black tea by UPLC-MS-MS. Agricultural Technology and Equipment, 2017(7): 9-12, 14. (in Chinese) 陈秋虹, 黄艳, 周洁洁, 覃祖前, 刘布鸣, 柴玲, 莫建光. 长柱金花茶叶的化学成分研究(Ⅱ). 中草药, 2017, 48(23): 4845-4850. Chen Q H, Huang Y, Zhou J J, QIN Z Q, Liu B M, Chai L, Mo J G. Chemical constituents from leaves of Camellia nitidissima var. longistyla (II). Chinese Traditional and Herbal Drugs, 2017, 48(23): 4845-4850. (in Chinese) 刘盼盼, 龚自明, 高士伟, 郑鹏程, 郑琳. 茶叶香气质量评价方法研究进展. 湖北农业科学, 2016, 55(16): 4085-4089, 4092.Liu P P, Gong Z M, Gao S W, Zheng P C, Zheng L. Research progress in aroma quality evaluation of tea. Hubei Agricultural Sciences, 2016, 55(16): 4085-4089, 4092. (in Chinese) 汤莎莎, 芦晨阳, 周君, 韩姣姣, 张红燕, 崔晨茜, 苏秀榕. 基于电子鼻和HS-SPME-GC-MS技术解析乌牛早茶的挥发性风味物质.食品工业科技, 2018, 39(14): 223-230. Tang S S, Lu C Y, Zhou J, Han W, Zhang H Y, Cui C X, Su X R. Volatile flavor compounds of different Wu Niuzao leaves and different heating temperatures based on electronic nose and GC-MS. Science and Technology of Food Industry, 2018, 39(14): 223-230. (in Chinese) 陈宗懋, 杨亚军. 中国茶经. 上海: 上海文化出版社, 2011: 673-674.Chen Z M, Yang Y J. Chinese Tea Classics. Shanghai: Shanghai Culture Press, 2011: 673-674. (in Chinese) 田易萍, 徐丕忠, 朱兴正. 国家级茶树良种云抗10号在云南省的应用及推广. 现代农业科技, 2011(24): 118-119.Tian Y P, Xu P Z, Zhu X Z. Application and popularization of national tea tree variety Yunkang No.10 in Yunnan province. Xiandai Nongye Keji, 2011(24): 118-119. (in Chinese) Chen W, Gong L, Guo Z l, wang w s, zhang h y, liu x q, yu s b. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769-1780. Fraga C G, Clowers B H, Moore R J, zink e m. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165-4173. Chen Y H, zhang r p, song y m, he j m, sun j h, bai j f, an z l, dong l j, zhan q m, abliz z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: Finding potential biomarkers for breast cancer. The Analyst, 2009, 134(10): 2003-2011. 宛晓春. 茶叶生物化学. 北京: 中国农业出版社, 2003: 11-35.Wan X C. Tea Biochemistry. Beijing: China Agriculture Press, 2003: 11-35. (in Chinese) 杨新河. 普洱茶色素提取、分级及生物活性研究. 长沙: 湖南农业大学, 2011. Yang X H. Extraction, grading and bioactivity of Pu'er tea pigment . Changsha: Hunan Agricultural University, 2011. (in Chinese) 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6): 1066-1077.Chen q c, dai w d, lin z y, jie d c, lv m l, lin z.Effects of shading on main quality components in tea (Camellia Sinensis (L) O. Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese) 吕以仙. 有机合成基础第七版. 北京: 人民卫生出版社, 2008: 161-165.LÜ Y X. The Basis of Organic Synthesis, 7th edition. Beijing: People’s Medical Publishing House, 2008: 161-165. (in Chinese) 许伟, 彭影琦, 张拓, 孔莹莹, 肖文军. 绿茶加工中主要滋味物质动态变化及其对绿茶品质的影响. 食品科学, 2019, 40(11): 36-41.Xu W, Peng Y Q, Zhang T, Kong Y Y, Xiao W J. Dynamic changes of major taste substances during green tea processing and its impact on green tea quality. Food Science, 2019, 40(11): 36-41. (in Chinese)Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on MetabolomicsDAI YuQiao1,2, LÜ CaiYou1, HE LuNan1, YI Chao1, LIU XueYan1, HUANG Wen1, CHEN JiaMin1(1College of Long Run Pu-erh Tea, Yunnan Agricultural University, Kunming 650201; 2Guizhou Tea Institute, Guiyang 550006)Abstract:【Objective】The ultrahigh phase liquid chromatography/mass spectrometry (LC-MS) combined technique of metabolomics was used to explore the changes of metabolites in the processing of sun-dried green tea of Camellia sinenis var. assamica cv. Yunkang 10, and to find the iconic metabolites affecting the formation of sun-dried green tea quality. Further study on the change path of these substances would lay a foundation for understanding the formation mechanism of sun-dried green tea quality. 【Method】In the process of making Yunkang 10 sun-dried green tea, 3 samples of fresh leaves, rolled leaves and sun-dried leaves were taken respectively. After the samples were pretreated, the metabolites in the three groups of samples were detected by LC-MS and identified by mass spectrometry database. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to analyze the detection data of three groups of samples. Metabolites with significant differences were screened out by PLS-DA method. 【Result】LC-MS analysis method for the endogenous metabolites of Yunkang 10 fresh leaves, rolled leaves and sun-dried leaves was established, and commercial mass spectrometry database was used for rapid identification of the detected metabolites. The metabolome data were imported into SIMCA-P software for principal component analysis and partial least squares discriminant analysis, and the metabolome data could be used to distinguish the three groups of samples. By LC/MS technique on Yunkang 10 sun-dried green tea and its processing tea, in combination with multivariate statistical analysis, there were 701 kinds of metabolites were significant differences among the fresh leaves, rolling leaves and sun-dried leaves, and 116 kinds metabolites between fresh leaves and rolling leaves, 158 kinds of metabolites between sun-dried leaves and fresh leaves, and 48 kinds of metabolites between sun-dried leaves and rolling leaves were found. By searching KEGG database to analyze metabolites, these metabolites were mainly related to amino acid metabolism, polyphenol metabolism and other energy metabolism pathways. 【Conclusion】LC-MS technique could be used to distinguish fresh leaf group, rolled leaf group and sun-dried leaf group of Yunkang 10, which proved that metabolomics technology could reveal the chemical changes of metabolites in sun-dried green tea to some extent. The key metabolites were found in the study could provide a theoretical basis for evaluating the quality of sun-dried green tea, and lay a theoretical foundation for exploring the formation of "sunburn taste" of sun-dried green tea and the formation mechanism of sun-dried green tea quality.Key words: liquid chromatography/mass spectrometry; sun-dried green tea; Yunkang 10; metabolomics; metabolitesdoi: 10.3864/j.issn.0578-1752.2020.02.010开放科学(资源服务)标识码(OSID):http://rtt.5read.com/pdgpath/format?f=639fce271c067bd0821da588095a1627/356e0140f403fc9ef43cbdade4461a28.jpg收稿日期:2019-04-18;接受日期:2019-10-09基金项目:国家现代农业茶叶产业体系专项资金资助(CARS-19)联系方式:戴宇樵,18985575397;E-mail:827927867@qq.com。通信作者吕才有,E-mail:2495846526@qq.com(责任编辑 赵伶俐)


页: [1]
查看完整版本: 基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化