奥鹏网院作业 发表于 2021-2-4 16:21:58

酚类化合物干预镉致肝损伤的研究进展

酚类化合物干预镉致肝损伤的研究进展酚类化合物干预镉致肝损伤的研究进展郝日礼,李大鹏*(山东农业大学食品科学与工程学院,山东省高校食品加工技术与质量控制重点实验室,山东 泰安 271018)摘要:镉是环境和食品中常见的一种重金属污染物,会对人体器官尤其是肝脏造成不可逆损伤。研究发现,镉致肝损伤的机制可能与氧化应激的发生有关。酚类化合物普遍存在于植物性膳食中,具有较强的抗氧化能力,近年来,越来越多的研究结果表明,酚类化合物对镉致肝损伤有显著的防治效果。本文综述了酚类化合物干预镉致肝损伤的研究进展,以期为酚类化合物的开发和应用提供理论参考和研究思路。关键词:镉;植物膳食;酚类化合物;氧化应激;肝损伤工业发展产生的环境污染,特别是重金属污染引起的人类健康问题逐年增多。镉是环境中最常见的重金属污染物之一,具有极长的半衰期(1~30 年)、较强的毒性和累积性。研究表明,即使在低水平下,镉的长期暴露也会对人体健康造成危害,引起肝脏、肾脏、睾丸、耳朵、眼睛等器官损伤。肝脏是人体最大的器官之一,具有合成和分泌血浆蛋白及其他重要物质(如胆汁和糖原),转化和储存营养物质、异生素以及调节脂质代谢等多种生理功能。研究发现,肝脏是长期低水平镉暴露蓄积量最高的器官,是短期镉暴露损伤的主要靶标。镉诱导肝脏损伤的机制较为复杂,镉可以通过简单扩散或者钙离子通道等转运系统进入肝细胞,诱导产生自由基和活性氧(reactive oxygen species,ROS)引发氧化应激,这可能是金属镉致肝损伤的主要机制之一。因此,抑制氧化应激损伤可能在防治镉致肝损失中起关键作用。酚类物质是一种广泛存在于植物膳食中的天然抗氧化剂,可以有效预防和干预糖尿病、神经退行性疾病、心血管疾病和癌症等氧化应激相关疾病,还能够保护机体免受紫外线引起的氧化损伤。酚类化合物的强抗氧化能力主要归因于其结构中存在的-OH基团,它们能够很好地淬灭自由基、螯合金属离子、诱导抗氧化酶活性和调控体内抗氧化细胞信号通路等,从而有效预防重金属造成的机体损伤。研究表明,富含橙皮素、柚皮素、槲皮素等酚类化合物的食品,如蓝莓、绿茶、大蒜和蜂蜜等具有保护肝脏、减缓和治疗镉致肝损伤的作用。镉致肝损伤对人体健康有极大的危害,但是目前尚缺乏有效的治疗方法。因此,从膳食干预的角度寻找能够抵御镉致肝损伤的天然食品活性成分具有重要的现实意义。本文就酚类化合物干预镉致肝损伤的最新研究进展进行了综述。1 镉致肝损伤的机制镉通过多种途径造成机体产生氧化应激状态,进而导致DNA损伤、蛋白质结构破坏以及细胞凋亡并最终引起肝损伤。因此,镉暴露、氧化还原稳态变化和氧化应激之间的相关性是镉致肝损伤发病机制中的关键因素(图1)。高校所处外部政治经济环境不断变化,自身在不断发展中面临的风险和问题也在不断变化。而部分高校内控仅仅是流于形式的“一次性建设“,并没有根据高校内外部环境的变化进行改进和调整,内部控制措施和框架存在滞后性和不适应性。同时,高校内控缺乏长期规划性,缺乏相应的内控固化措施。 http://rtt.5read.com/pdgpath/format?f=dbdaa6020c5b67d4600b03a2a3cf28dc/fef607caccf50b19e69000b0ecc6973e.jpg&p=752x400&q=30   图 1 镉致肝脏损伤的机制
Fig. 1 Mechanism of cadmium-induced liver injury
1.1 镉与氧化应激镉通过直接诱导ROS的过量产生、置换氧化还原活性金属、造成线粒体损伤以及破坏机体抗氧化系统影响人体氧化还原平衡,进而引起机体氧化应激损伤。1.1.1 直接诱导ROS的过量产生研究表明,虽然镉不是氧化还原活性金属,但镉的摄入会诱导过氧化氢(H2O2)、超氧阴离子自由基和羟自由基等ROS的产生。在PC12细胞模型中,镉通过蛋白激酶B(protein kinase B,Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号诱导ROS产生,调节细胞色素c(cytochrome c,Cyt c)、Caspase 3、Bcl-2、Bax等蛋白的表达,进而诱导细胞凋亡。在HL-7702肝细胞模型中,镉诱导细胞内ROS水平升高,促进了细胞的凋亡。在神经细胞模型中,镉通过mTOR通路诱导细胞内ROS水平升高,引发氧化应激,造成细胞凋亡。1.1.2 置换氧化还原活性金属Fe是一种具有较强氧化还原活性的金属元素,游离Fe2+可以通过Fenton反应生成具有高度破坏性的羟自由基,与其他物质紧密结合的Fe则不具备这种活性。镉能够将与其他物质结合的Fe置换出,从而增加细胞中游离Fe2+的含量,促进Fenton反应的进程,诱导机体氧化应激发生。研究发现,在没有Fe2+存在的条件下,暴露于CdCl2(75 μmol/L)的雄性Wistar大鼠无法通过硫代巴比妥酸反应物(thiobarbituric reactive substances,TBARS)反应产生脂质过氧化物;而饲粮补充25 μmol/L Fe2+的大鼠通过TBARS反应产生脂质过氧化物的量与Cd-Fe组合饲粮(75 μmol/L CdCl2和25 μmol/L Fe2+)饲喂Wistar大鼠产生脂质过氧化物的量相当,表明镉并不能直接诱导脂质过氧化物的产生,而是通过置换Fe来实现。此外,在大鼠细胞实验模型中,镉将Fe从其结合位点置换出,并且通过Fe在这些细胞中连续再分布引起氧化应激。宝宝总是率性而为,想怎么做就怎么做。那么,面对一些生活常规的事,宝宝不愿意去做时,你该怎么办?例如:该吃饭的时候不好好吃饭、不愿意洗澡或不让父母洗头发、睡觉时间到了却坚持要玩这个玩那个。 1.1.3 线粒体损伤线粒体损伤是镉诱导氧化应激的另一条途径。线粒体是镉的关键细胞器靶标。镉的摄入会降低线粒体膜电位,并通过抑制线粒体电子传递链酶复合物(特别是复合物II和III)的活性,抑制细胞能量的产生。线粒体损伤引起的氧化应激会对细胞、细胞内膜、组织等产生不利影响,导致脂质过氧化、蛋白质氧化和羰基化,调节总抗氧化能力,改变线粒体超微结构。在SH-SY5Y细胞模型中,镉处理造成细胞线粒体膜电位和ROS水平升高。此外,镉对细胞膜、细胞质蛋白和含有-SH的酶具有高亲和力,导致细胞结构和功能受到破坏。用CdCl2(2.5、5 μmol/L和10 μmol/L)处理HepG2细胞12 h,会引发细胞毒性,破坏细胞线粒体膜电位,增加ROS产生,并降低线粒体质量和线粒体DNA含量;同时,降低沉默信息调节因子(silent information regulator,SIRT)1的表达和活性,促进线粒体中关键酶过氧化物酶体增殖物激活受体γ辅助活化因子1的乙酰化。1.1.4 破坏机体抗氧化系统镉能够直接靶向谷胱甘肽(glutathione,GSH),而GSH的消耗或缺乏会影响镉的清除,破坏细胞氧化还原平衡,诱导氧化应激。镉的摄入会抑制VC和VE等非酶类小分子抗氧化剂的调节作用,并弱化一些抗氧化酶类(如过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、谷胱甘肽还原酶(glutathione reductase,GR)等)的功能。此外,镉还会通过改变细胞中某些抗氧化酶的辅因子(如Ca、Cu、Fe、Mg、Se、Zn等)的稳态,降低抗氧化酶活性。比如Se-Cd复合物会降低GSH-Px活性,镉与Cu、Zn和Mn的相互作用会破坏SOD的正常功能。1.2 氧化应激与肝损伤镉诱导的氧化应激损伤是全身性的,在肝脏部位,氧化应激会造成DNA损伤、细胞自噬以及凋亡等,这是镉致肝损伤的主要致病机理。1.2.1 DNA损伤镉诱导机体发生氧化应激后,通常会导致细胞核内DNA损伤,并造成遗传毒性,如DNA链断裂、染色体畸变等。研究发现,CdCl2(1~5 μg/mL)诱导HepG2细胞DNA单链断裂,并呈现剂量依赖性;彗星实验结果显示,CdCl2处理HepG2细胞的DNA损伤比例和彗尾长度以剂量依赖性方式显著增加。此外,镉引发的氧化应激可能通过破坏DNA修复机制进而对机体造成损伤。1.2.2 细胞自噬细胞自噬又称II型程序性细胞死亡,与多种疾病的发生相关。研究表明,镉引发氧化应激后,会诱导肝脏中细胞自噬的发生,这一过程可能与SIRT3/SOD2通路有关。研究发现,10 mmol/L的CdCl2处理HepG2细胞12 h,会诱导氧化应激发生,下调SIRT3蛋白表达,降低SOD2活性,导致自噬相关蛋白微管相关蛋白(light chain 3,LC3)II表达升高,引发自噬。1.2.3 细胞凋亡5. 统计学处理:资料采用 SPSS 13.0 医学统计软件进行处理。计量资料以均数±标准差表示,组间比较采用独立样本t检验,组内治疗前后比较采用配对t检验。P<0.05表示差异有统计学意义。 细胞凋亡是由基因控制的细胞自主有序的死亡,镉损伤诱导的氧化应激与细胞凋亡密切相关。镉(5、10 μmol/L)通过血红素氧化酶1(heme oxygenase 1,HO-1)/Caspase 3途径介导细胞凋亡,诱导氧化应激相关蛋白HO-1表达升高,进而导致Caspase 3、Bax、Cyt c等凋亡相关蛋白表达升高。此外,在PC12细胞模型中,镉通过Akt/mTOR线粒体途径诱导神经细胞凋亡。通过对最新脑科学研究成果的解读,我们可以看到脑科学的研究已经走到了与其他多学科交叉的关键时刻,而且物理、化学等多种方法在脑科学研究中的运用一再突破脑科学的极限,使最终观测大脑实时活动成为可能。 1.2.4 其他损伤途径研究发现,镉可能通过多种途径诱导机体损伤,如影响细胞信号传导途径、改变细胞周期、影响细胞增殖和分化等。镉通过置换E-钙黏蛋白(负责组织中细胞正确黏附的糖转移蛋白)中的Ca2+,破坏细胞黏附,活化β-连环蛋白(信号分子),增强细胞增殖。体内和体外实验表明,镉可能通过直接损伤DNA、诱导ROS产生、破坏Ca稳态平衡等造成细胞凋亡和组织坏死。此外,镉摄入会通过调节p53、rad51和gadd45等原癌基因,抑制DNA甲基化,破坏细胞信号通路等途径促进癌症的发生。2 酚类化合物保护肝脏抵御镉损伤作用的研究进展研究表明,酚类化合物具有保护肝脏抵御镉损伤的作用。酚类物质富含-OH基团,能够螯合金属离子,具有抗氧化特性,对氧化应激具有较强的调节作用。寻找能够有效预防和治疗镉中毒的植物酚类化合物是现代毒理学研究的主要方向之一。医学之父希波克拉底曾经说过:“阳光、空气、水和运动是生命和健康的源泉。”从这句话中可以看出,运动对于生命来说如同空气、阳光、水一样重要。 2.1 黄酮类黄酮类成分是酚类物质中种类最多、分布最广的一类活性物质,广泛存在于天然植物中,其结构较为复杂,含有C6-C3-C6的基本骨架,具有抗氧化、抗凋亡、抗重金属损伤、保护肝脏等多种药理活性。2.1.1 槲皮素集体备课是教师个人空间建设专业性的体现,它能够将教师与日常生活进行联系,对传统的备课模式进行创新,使备课的主体呈现多元化。不仅仅局限于本校教师,将备课的范围进行了扩大,集合了更多的力量,使备课质量得到显著提高。在进行功能的设计时,可以采用再现编辑模式,使教师都能够参与教案的修改与制定。教师在进行教学中要结合本班情况对教案进行有针对性的设计。这些操作都在网络上进行,并将最终的教研结果保留在平台上,最终制成数据库,从而提高教学资源的利用率,促进教学资源更好地为实际教学系统服务。 我这样孜孜不倦地寻找白丽筠,一年后传来了一个比较靠谱的消息。有人说,在广东东莞见到了白丽筠。听到这个消息,我马上就去了那座城市。为了找到白丽筠,我必须寻遍花街柳巷,深入一家家娱乐会所。我没有钱,穿戴寒酸,人瘦毛长,脸颊都凹陷下去了。这副形象自然不受欢迎。 槲皮素是一种来源丰富的黄酮醇类物质,广泛分布于苹果、葡萄、坚果、绿茶等果蔬中。研究表明,槲皮素对镉损伤具有保护作用。同时口服灌胃小鼠5 mg/kg mb CdCl2和50 mg/kg mb槲皮素连续4 周,能够显著降低由镉引起的肝脏血清特异性酶(谷草转氨酶(aspartate transaminase,AST)、谷丙转氨酶(alanine aminotransferase,ALT)、碱性磷酸酶(alkaline phosphatase,ALP))、乳酸脱氢酶(lactic dehydrogenase,LDH)和γ-谷氨酰转移酶活性的升高,减缓小鼠肝脏的脂质过氧化。此外,槲皮素能够减缓镉对SOD、CAT、GSH-Px、谷胱甘肽S-转移酶(glutathione S-transferase,GST)等抗氧化酶活性的抑制作用,提高肝脏中GSH、VC和VE的含量。腹腔注射100 mg/kg mb槲皮素能够调节由镉损伤(腹腔注射2 mg/kg mb CdCl2)诱导的小鼠CAT和SOD活性、GSH和抗坏血酸水平的改变,保护镉诱导的小鼠肝脏中的蛋白质和脂质过氧化。此外,槲皮素能有效缓解由镉诱导引起的小鼠肝脏形态的改变。2.1.2 橙皮素和柚皮素橙皮素和柚皮素是广泛存在于柑橘类水果中的二氢黄酮类化合物,具有抗氧化、抗炎、抗纤维化等多种生理功能,能够降低镉对生物体的毒性作用。用橙皮素(10、20 mg/kg mb或40 mg/kg mb)和镉(3 mg/kg mb CdCl2)共同饲养大鼠21 d,与CdCl2单独饲养组比较,给予橙皮素后大鼠肝脏中AST活性、ALP含量、血清中胆红素浓度降低;高剂量橙皮素饲养组大鼠肝脏中CAT、SOD、GSH-Px和GR的活性增加;橙皮素通过降低TBARS值、脂质氢过氧化物、蛋白质羰基化合物和共轭二烯水平,减轻镉对细胞膜的损伤;此外,组织病理学结果表明,橙皮素可减轻镉造成的肝脏形态病变,如肝细胞坏死、淋巴细胞浸润、细胞变性和血窦扩张等。饲粮补充25、50 mg/kg mb柚皮素饲养小鼠4 周,结果表明,柚皮素能够减轻CdCl2(5 mg/kg mb)诱导的小鼠血清中ALT、AST、LDH活力和胆红素浓度的升高,高剂量柚皮素抑制了由CdCl2(5 mg/kg mb)诱导的小鼠抗氧化酶(SOD、CAT、GPx、GR)和葡萄糖-6-磷酸脱氢酶活力的降低,并且调节肝脏中抗氧化非酶类物质(GSH、VC和VE)水平;50 mg/kg mb柚皮素处理显著抑制CdCl2诱导的小鼠肝脏脂质过氧化和蛋白质损伤,减缓镉诱导的肝脏组织病理变化(如炎症细胞浸润、空泡化和肝细胞坏死等)。此外,采用5 μmol/L柚皮素预处理可以减缓CdCl2(50 μmol/L)诱导的小鼠肝脏细胞凋亡,通过调节Bax/Bcl-2、Caspase 3、Cyt c表达水平、Nrf2和金属硫蛋白基因表达水平,进而调节线粒体途径介导的细胞凋亡。2.2 花青素及原花青素聚合物2.2.1 花青素花青素是一种在自然界中广泛存在的酚类物质,具有极强的自由基清除能力和抗氧化活性,在镉损伤的情况下对肝脏具有保护作用。以不同剂量(0.3、3 mg/kg mb和30 mg/kg mb)的花青素连续喂养小鼠14 d,可显著抑制CdCl2(2 mg/kg mb)处理导致的小鼠肝脏中CAT、SOD活力的降低,减轻肝脏中NO和丙二醛(malondialdehyde,MDA)的积累,降低小鼠肝脏中AST活力和ROS含量,抑制肝脏中镉的蓄积;同时,花青素能够改善镉引起的小鼠基本矿物元素代谢紊乱,调节小鼠肝脏中锌和钙等矿物元素水平;组织学研究表明,花青素处理能够显著改善镉诱导的肝脏形态病变;此外,花青素能够减轻镉诱导的DNA损伤和肝脏损伤,并呈剂量依赖性;在高剂量花青素处理时,其保护作用更加明显。步骤2:编码。设置惩罚因子C和参数g范围分别为、。对其进行二进制编码,构建初始种群。 2.2.2 单宁酸单宁酸是一类广泛存在于石榴、五倍子、葡萄和芒果等植物中的水溶性物质,是原花青素的聚合物,具有很强的抗氧化、抗炎、降糖降脂和抗癌活性。2.5 mg/kg mb单宁酸能减缓CdCl2(7 mg/kg mb)诱导的大鼠骨损伤;同时,单宁酸也对CdCl2造成的大鼠脑损伤具有保护作用;单宁酸通过减缓CdCl2对SOD和CAT活力的抑制,进而发挥保护作用。2.3 酚酸及其衍生物2.3.1 绿原酸绿原酸是一种广泛存在于植物、水果和蔬菜中的生物活性成分,具有抗氧化、抗菌、保肝等功能,是由咖啡酸和奎尼酸生成的缩酚酸。镉的摄入会抑制大鼠体内乙酰胆碱酯酶活力,提高脂质过氧化水平,降低ATP酶活性,导致线粒体功能障碍和DNA片段化,绿原酸预处理显著减弱了这些影响,通过抑制膜效应和线粒体功能障碍减轻了镉诱导的大鼠氧化损伤。从那晚开始,哥俩就分享那个女人。那种肮脏的苟合同本地正派规矩格格不入,谁都不想了解细节。开头几个星期相安无事,但长此下去毕竟不是办法。兄弟之间根本不提胡利安娜,连叫她时都不称呼名字。但两人存心找茬,老是闹些矛盾。表面上仿佛是争论卖皮革,实际谈的是另一回事。争吵时,克里斯蒂安嗓门总是很高,爱德华多则一声不吭。他们互相隐瞒,只是不自知而已。在冷漠的郊区,女人除了满足男人的性欲,供他占有之外,根本不在他眼里,不值得一提,但是他们两个都爱上了那个女人。从某种意义上来说,这一点使他们感到丢人。 式(1)中,S为变电站所属所有10 kV馈线负荷全转移标识的乘积。如变电站任何一条10 kV馈线负荷不能全部转移,即其中任一个SN=0,则变电站全停校验结果为0,不能实施全站停电。由此可知:要使S=1,该变电站所属所有10 kV馈线负荷全转移标识均为1,才能够实现变电站全停下的负荷全转移,即变电站全停通过;当S=0时,该变电站所属10 kV馈线不能够实现变电站全停下的负荷全转移,即变电站全停校验不通过。 2.3.2 咖啡酸苯乙酯咖啡酸苯乙酯(caffeic acid phenethyl ester,CAPE)是蜂胶中主要的生物活性成分之一,是咖啡酸的衍生物,其结构中含有儿茶酚结构,具有较强的抗氧化作用,对镉诱导的损伤有明显的保护作用。镉的摄入会诱导大鼠机体发生氧化应激,造成细胞凋亡、睾丸损伤等,而CAPE处理能够降低细胞凋亡,抑制氧化应激,调节睾酮水平等。此外,CAPE对镉诱导的小鼠肾脏损伤也具有保护作用。在小鼠模型中,镉诱导小鼠肾脏中脂质过氧化和蛋白质羰基化的发生,降低SOD活力和GSH水平,引起肾脏中镉和Zn水平的变化;而CAPE处理能够调节镉诱导的小鼠肾脏损伤。2.3.3 表没食子儿茶素没食子酸酯表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)是茶叶中最有效的活性成分之一,属于儿茶素的衍生物,具有抗氧化、抗炎、保护重金属损伤等特性。CdCl2(80 μmol/L)诱导HL-7702人肝细胞48 h,导致细胞活力下降,ROS水平显著上升,细胞凋亡水平升高。EGCG(50、100、200 μmol/L)预处理细胞3 h,能够显著升高细胞活力,降低细胞凋亡和ROS水平,并呈剂量依赖效应。2.4 多酚提取物植物中的多酚类成分种类丰富,在膳食过程中常以混合物的方式发挥生理功能。一些研究也表明,植物性膳食的健康效应与多种酚类物质的整体作用有关。因此,以植物多酚提取物的方式研究其对重金属镉损伤的保护效应较多。白音高老组火山岩在微量元素Rb/Sr=1.18~12.41,平均5.78,远高于上地幔Rb/Sr值,Nb含量15.96~20.13×10-6,Ta含量1.3~1.59×10-6,接近于地壳中Nb、Ta元素丰度。表明白音高老组火山岩岩浆物质主要来源于地壳。 2.4.1 蓝莓多酚提取物蓝莓多酚具有较强的抗氧化性,可以预防与氧化应激相关疾病(如癌症、糖尿病和心脏病等),并对镉等重金属损伤具有显著的保护作用。蓝莓多酚提取物能够改善镉诱导的小鼠生殖损伤和肝脏损伤。小鼠饲喂0.3、3 mg/kg mb和30 mg/kg mb蓝莓多酚提取物能够显著降低镉(2 mg/kg mb CdCl2)诱导的肝脏损伤,降低小鼠肝脏中AST和血浆中ALT的活性,并以剂量依赖的方式增加小鼠肝脏中CAT和SOD活性,抑制NO和MDA积累;此外,组织学研究表明,蓝莓提取物能够保护由镉损伤诱导的肝脏形态变化。2.4.2 木槿多酚提取物其中,Prated 为磷酸铁锂电池可提供的额定功率,Irated为磷酸铁锂电池提供的额定电流,Ub 为磷酸铁锂电池的等效电压,I0为负载的电流幅值,γ为功率增强因子,衡量应对脉冲性负载时超级电容的响应情况。采用联合供电模式,铁锂电池和超级电容全部投入。依照文献,混合动力系统的固有频率为: 木槿是一种富含多酚的热带植物,具有抗氧化、抗癌、抗高血压、保护肾脏和肝脏的功能。木槿多酚提取物对镉造成的肝脏、睾丸和前列腺损伤等具有保护作用。木槿多酚提取物能够减缓镉诱导的大鼠肝脏脂质过氧化,并以剂量依赖的方式调节大鼠肝脏中GSH-Px、SOD和CAT等抗氧化酶的活性,降低血清中ALP、ALT、AST的活性和胆红素浓度。2.4.3 大蒜和洋葱多酚提取物洋葱和大蒜中含有丰富的多酚和有机硫化合物等天然生物活性成分。这些成分抗氧化和抗炎活性较强,具有保护镉诱导的肾脏、肝脏和睾丸损伤的功能。大蒜多酚提取物(0.5、1 mL/100 g)和洋葱多酚提取物(0.5、1.0 mL/100 g)都能够抑制镉(1.5 mg/kg mb CdCl2)诱导的大鼠血清ALT、AST活力的升高,调节大鼠肝脏中GSH含量和SOD、CAT的活力。此外,大蒜提取物对镉诱导的肝脏组织结构损伤(肝脏凝固性坏死、充血和窦状隙扩大等)具有显著的保护作用,能够使肝脏恢复正常外观。2.4.4 螺旋藻多酚提取物螺旋藻是一种富含多酚化合物的藻类,具有抗氧化、抗癌、抗炎、抗菌等能力。螺旋藻具有较强的自由基清除能力和金属离子螯合能力,能够保护肝脏免受多种毒性物质的损伤。螺旋藻多酚提取物(1 mg/kg mb)预处理可改善急性镉(3.5 mg/kg mb CdCl2)中毒对大鼠肝脏造成的损伤,这可能与其抑制大鼠肝脏中ALT、AST活性和MDA积累,增强GSH-Px、CAT、SOD活性有关。此外,螺旋藻多酚提取物可以保护镉导致小鼠肝脏形态病变,除肝脏组织的一些轻度残余变性外,螺旋藻多酚提取物几乎完全缓解了镉诱导的小鼠肝脏组织病理变化(如细胞质空泡化、核固缩和小叶中心坏死等)。酚类化合物在干预镉致肝脏损伤中的作用及机制见表1,其化学结构式如图2所示。表 1 酚类化合物在干预镉致肝脏损伤中的作用及机制
Table 1 Protective effect and underlying mechanism of polyphenols against cadmium-induced liver injuryhttp://rtt.5read.com/pdgpath/format?f=dbdaa6020c5b67d4600b03a2a3cf28dc/2f84d195c4bafde771906478f008c161.jpg&q=30   注:↑.上调;↓.下调。化合物分类 化合物名称 作用机制 参考文献类黄酮槲皮素 抗氧化酶活性↑,减缓脂质过氧化,GSH、VC、VE等抗氧化物质水平↑,保护肝脏形态 橙皮素 调节AST、ALT活力等肝损伤指标,调节血清中胆红素浓度,抗氧化酶活性↑,保护肝脏形态,TBARS值、脂质过氧化水平↓ 柚皮素抗氧化酶活性↑,GSH、VC、VE、GR等抗氧化物质水平↑,脂质过氧化水平↓,蛋白质损伤↓,Bcl-2/Bax↑,Caspase 3↓、Cyt c表达水平↓、调节Nrf-2、金属硫蛋白mRNA表达花青素及原花青素聚合物花青素 调节AST、ALT活力等肝损伤指标,肝脏NO、MDA含量↓,抗氧化酶活性↑,DNA损伤↓ 单宁酸 SOD活性↑和CAT活性↑ 绿原酸 乙酰胆碱酯酶活性,脂质过氧化水平↓,ATP酶活性↑,减轻线粒体功能障碍和DNA片段化 酚酸及衍生物咖啡酸苯乙酯细胞凋亡↓,抗氧化酶活性↑,改善肝脏组织外观,脂质过氧化和蛋白质羰基化水平↓ EGCG 细胞活力↓,ROS水平↓,细胞凋亡↓ 多酚提取物蓝莓多酚 AST和ALT活性↓,抗氧化酶活性↑,NO和MDA含量↓,改善肝脏形态 木槿多酚 抗氧化酶活性↑,ATS、ALT、ALP水平↓,胆红素浓度↓ 大蒜和洋葱多酚ATS、ALT水平↓,抗氧化酶活性↑,保护肝组织结构,改善肝形态 螺旋藻多酚 ALT、AST水平↓,MDA含量↓,GSH、CAT、SOD等抗氧化酶活性↑,脂质过氧化水平↓,保护小鼠肝脏形态
http://rtt.5read.com/pdgpath/format?f=dbdaa6020c5b67d4600b03a2a3cf28dc/427e9ebf78165909bceace19c2cb12b0.jpg&p=782x1456&q=30   图 2 常见酚类化合物的化学结构
Fig. 2 Chemical structures of common phenolic compounds
3 结 语镉的摄入会通过升高ROS水平、置换氧化还原活性金属、损伤线粒体、破坏机体抗氧化系统等,诱导机体氧化应激的发生,造成DNA损伤、蛋白质失活、细胞凋亡、自噬及组织形态改变等,最终导致肝脏损伤。植物酚类物质对氧化应激具有较强的调节作用,其预防和治疗肝损伤的过程主要与调控Nrf-2和P450等信号通路有关。类黄酮、花青素、酚酸及衍生物等植物酚类成分可能通过诱导GSH-Px、CAT、SOD等抗氧化酶以及HO-1、烟酰胺腺嘌呤二核苷酸磷酸∶醌氧化还原酶1等II相解毒酶活性改变、降低脂质过氧化水平、减轻蛋白质损伤等途径保护镉诱导的肝损伤。因此,找到植物酚类物质消除镉对肝脏毒性作用的有效靶点,筛选具有良好保护效果的植物酚类物质以及评估人体肝脏状态与植物酚类物质消耗之间的关系具有重要意义。此外,植物多酚提取物在减缓镉诱导的氧化应激,改善肝脏形态,保护肝组织结构等方面具有显著的效果,但是提取物中起作用的主要活性成分尚不明确,特别是其中多种活性成分之间的协同、加和或拮抗作用机制和剂量效应亟待阐明。总之,开发以植物酚类物质为主要成分的功能食品可能是预防和干预镉致肝损伤的良好策略,但是目前植物酚类物质干预镉致肝损伤的研究较少。因此,筛选和明确具有良好肝脏保护作用的酚类物质,阐明其作用靶点及调控机制将是该领域的研究热点。广东理工学院是属于应用型本科院校,对教师提出的要求也比较高,同时,每年都会派出大量的教师外出培训更新知识,也会派出大量的教师到企业中去实践,加强校企合作,还通过教师带队和学生一起到企业实践,同时鼓励教师多做科研,通过多种多样的形式提高教师们能力。建设一支知识和能力结合的教学科研队伍。其次,学校还聘请了注册会计师和很多企业会计总监、财务经理来我校兼职任教和培训,这些对我们“双师型”的师资队伍建设及教学都得到提高。 参考文献: FAGERBERG B, BARREGARD L, SALLSTEN G, et al. Cadmium exposure and atherosclerotic carotid plaques-results from the Malmo diet and cancer study. Environmental Research, 2015, 136: 67-74.DOI:10.1016/j.envres.2014.11.004. CHANG Yunfeng, WEN Jifang, CAI Jifeng, et al. An investigation and pathological analysis of two fatal cases of cadmium poisoning.Forensic Science International, 2012, 220(1/2/3): E5-E8. DOI:10.1016/j.forsciint.2012.01.032. BJORNSSON E S, HOOFNAGLE J H. Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports. Hepatology, 2016, 63(2): 590-603.DOI:10.1002/hep.28323. STINE J G, CHALASANI N P. Drug hepatotoxicity environmental factors. Clinics in Liver Disease, 2017, 21(1): 103-113.DOI:10.1016/j.cld.2016.08.008. MEZYNSKA M, BRZOSKA M M. Environmental exposure to cadmium-a risk for health of the general population in industrialized countries and preventive strategies. Environmental Science and Pollution Research, 2018, 25(4): 3211-3232. DOI:10.1007/s11356-017-0827-z. CHOI Y H, HU H, MUKHERJEE B, et al. Environmental cadmium and lead exposures and hearing loss in us adults: the national health and nutrition examination survey, 1999 to 2004. Environmental Health Perspectives, 2012, 120(11): 1544-1550. DOI:10.1289/ehp.1104863. BABA H, TSUNEYAMA K, YAZAKI M, et al. The liver in itaiitai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Modern Pathology, 2013, 26(9): 1228-1234. DOI:10.1038/modpathol.2013.62. GALAZYN-SIDORCZUK M, BRZOSKA M M, ROGALSKA J, et al.Effect of zinc supplementation on glutathione peroxidase activity and selenium concentration in the serum, liver and kidney of rats chronically exposed to cadmium. Journal of Trace Elements in Medicine and Biology, 2012, 26(1): 46-52. DOI:10.1016/j.jtemb.2011.10.002. MEZYNSKA M, TOMCZYK M, ROGALSKA J, et al. Protective impact of extract from Aronia melanocarpa berries against low-level exposure to cadmium-induced liver damage: a study in a rat model.Planta Medica, 2016 , 82(Suppl 1): S1-S381. DOI:10.1055/s-0036-1596843. ROGALSKA J, PILAT-MARCINKIEWICZ B, BRZOSKA M M.Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: a study in a rat model. Chemico-Biological Interactions, 2011, 193(3): 191-203.DOI:10.1016/j.cbi.2011.05.008. BRZOSKA M M, GALAZYN-SIDORCZUK M, JURCZUK M, et al.Protective effect of Aronia melanocarpa polyphenols on cadmium accumulation in the body: a study in a rat model of human exposure to this metal. Current Drug Targets, 2015, 16(13): 1470-1487. DOI:10.2174/1389450116666150102121708. QUIDEAU S, DEFFIEUX D, DOUAT-CASASSUS C, et al,Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie-International Edition in English,2011, 50(3): 586-621. DOI:10.1002/anie.201000044. RAVICHANDRAN R, RAJENDRAN M, DEVAPIRIAM D.Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chemistry, 2014, 146: 472-478. DOI:10.1016/j.foodchem.2013.09.080. HORNIBLOW R D, HENESY D, IQBAL T H, et al. Modulation of iron transport, metabolism and reactive oxygen status by quercetiniron complexes in vitro. Molecular Nutrition & Food Research,2017, 61(3): e21915. DOI:10.1002/mnfr.201600692. BOROWSKA S, BRZOSKA M M, TOMCZYK M. Complexation of bioelements and toxic metals by polyphenolic compoundsimplications for health. Current Drug Targets, 2018, 19(14): 1612-1638. DOI:10.2174/1389450119666180403101555. BRZÓSKA M M, BOROWSKA S, TOMCZYK M. Antioxidants as a potential preventive and therapeutic strategy for cadmium. Current Drug Targets, 2016, 17(12): 1350-1384. DOI:10.2174/1389450116666 150506114336. EL-SAYED Y S, EL-GAZZAR A M, EL-NAHAS A F, et al. Vitamin C modulates cadmium-induced hepatic antioxidants’ gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.Environmental Science and Pollution Research, 2016, 23(2): 1664-1670. DOI:10.1007/s11356-015-5412-8. GONG Pin, CHEN Fuxin, WANG Lan, et al. Protective effects of blueberries (Vaccinium corymbosum L.) extract against cadmiuminduced hepatotoxicity in mice. Environmental Toxicology and Pharmacology, 2014, 37(3): 1015-1027. DOI:10.1016/j.etap.2014.03.017. MATOVIC V, BUHA A, BULAT Z, et al. Route-dependent effects of cadmium/cadmium and magnesium acute treatment on parameters of oxidative stress in rat liver. Food and Chemical Toxicology, 2012,50(3/4): 552-557. DOI:10.1016/j.fct.2011.12.035. HENNING S M, WANG P W, SAID J W, et al. Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate, 2015, 75(5): 550-559. DOI:10.1002/pros.22943. RASINES-PEREA Z, TEISSEDRE P L. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules, 2017,22(1): 68-87. DOI:10.3390/molecules22010068. VENANCIO V P, CIPRIANO P A, KIM H, et al. Cocoplum(Chrysobalanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells. Food and Function, 2017, 8(1): 307-314. DOI:10.1039/c6fo01498d. TRESSERRA-RIMBAU A, RIMM E B, MEDINA-REMON A, et al.Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutrition Metabolism and Cardiovascular Diseases, 2014, 24(6): 639-647.DOI:10.1016/j.numecd.2013.12.014. WANG Jicang, ZHU Huali, LIU Xuezhong, et al. Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte. Biological Trace Element Research, 2014, 161(2):180-189. DOI:10.1007/s12011-014-0105-6. HAOUEM S, EL-HANI A. Effect of cadmium on lipid peroxidation and on some antioxidants in the liver, kidneys and testes of rats given diet containing cadmium-polluted radish bulbs. Journal of Toxicologic Pathology, 2013, 26(4): 359-364. DOI:10.1293/tox.2013-0025. WINIARSKA-MIECZAN A. The potential protective effect of green,black, red and white tea infusions against adverse effect of cadmium and lead during chronic exposure- a rat model study. Regulatory Toxicology and Pharmacology, 2015, 73(2): 521-529. DOI:10.1016/j.yrtph.2015.10.007. PARI L, SHAGIRTHA K. Hesperetin protects against oxidative stress related hepatic dysfunction by cadmium in rats. Experimental and Toxicologic Pathology, 2012, 64(5): 513-520. DOI:10.1016/j.etp.2010.11.007. SKIPPER A, SIMS J N, YEDJOU C G, et al. Cadmium chloride induces dna damage and apoptosis of human liver carcinoma cells via oxidative stress. International Journal of Environmental Research and Public Health, 2016, 13(1): 88-98. DOI:10.3390/ijerph13010088. AN Zhen, QI Yongmei, HUANG Dejun, et al. EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicology Mechanisms and Methods, 2014,24(4): 259-267. DOI:10.3109/15376516.2013.879975. YUAN Y, WANG Y, HU F F, et al. Cadmium activates reactive oxygen species-dependent Akt/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomedical and Environmental Sciences, 2016, 29(2): 117-126. DOI:10.3967/bes2016.013. CUYPERS A, PLUSQUIN M, REMANS T, et al. Cadmium stress:an oxidative challenge. Biology of Metals, 23(5): 927-940.DOI:10.1007/s10534-010-9329-x. ELISABETTA C, CESARE S, CLEMENTE L. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Archives of Biochemistry and Biophysics, 1997, 346(2): 171-179. DOI:10.1006/abbi.1997.0197. KOIZUMI T, LI Z G. Role of oxidative stress in single-dose, cadmiuminduced testicular cancer. Journal of Toxicology and Environmental Health, 1992, 37(1): 25-36. DOI:10.1080/15287399209531654. XU S, PI H, CHEN Y, et al. Cadmium induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis in its hepatotoxicity. Cell Death and Disease, 2013, 4: e540.DOI:10.1038/cddis.2013.7. PAESANO L, PEROTTI A, BUSCHINI A, et al. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology, 2016, 374: 18-28. DOI:10.1016/j.tox.2016.11.012. AMAMOU F, NEMMICHE S, MEZIANE R K, et al. Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food and Chemical Toxicology,2015, 78: 177-184. DOI:10.1016/j.fct.2015.01.001. XU Mingyuan, WANG Pan, SUN Yingjian, et al. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food and Chemical Toxicology, 2017,103: 246-252. DOI:10.1016/j.fct.2017.03.013. GUO Pan, PI Huifeng, XU Shangcheng, et al. Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alphadependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicological Sciences, 2014, 142(1): 182-195. DOI:10.1093/toxsci/kfu164. EL-BOSHY M E, RISHA E F, ABDELHAMID F M, et al. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. Journal of Trace Elements in Medicine and Biology,2015, 29: 104-110. DOI:10.1016/j.jtemb.2014.05.009. ALIMBA C G, GANDHI D, SIVANESAN S, et al. Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere, 2016, 164: 469-479. DOI:10.1016/j.chemosphere.2016.08.093. SKIPPER A, SIMS J N, YEDJOU C G, et al. Cadmium chloride induces dna damage and apoptosis of human liver carcinoma cells via oxidative stress. International Journal of Environmental Research and Public Health, 2016, 13(1): 88-98. DOI:10.3390/ijerph13010088. CHOMCHAN R, SIRIPONGVUTIKORN S, MALIYAM P, et al.Protective effect of selenium-enriched ricegrass juice against cadmium-induced toxicity and DNA damage in HEK293 kidney cells. Foods, 2018, 7(6): 81-95. DOI:10.3390/foods7060081. LI R Y, LUO X, ZHU Y J, et al. ATM signals to AMPK to promote autophagy and positively regulate DNA damage in response to cadmium-induced ROS in mouse spermatocytes. Environmental Pollution, 2017, 231: 1560-1568. DOI:10.1016/j.envpol.2017.09.044. CHEN Zhiyu, LIU Chuan, LU Yonghui, et al. Cadmium exposure enhances bisphenol A-induced genotoxicity through 8-oxoguanine-DNA glycosylase-1 OGG1 inhibition in NIH3T3 fibroblast cells.Cellular Physiology and Biochemistry, 2016, 39(3): 961-974.DOI:10.1159/000447804. ROSALES-CRUZ P, DOMINGUEZ-PEREZ M, REYES-ZARATE E,et al. Cadmium exposure exacerbates hyperlipidemia in cholesteroloverloaded hepatocytes via autophagy dysregulation. Toxicology,2018, 398: 41-51. DOI:10.1016/j.tox.2018.02.007. PI Huifeng, XU Shangcheng, REITER R J, et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy, 2015, 11(7): 1037-1051. DOI:10.1080/15548627.2015.1052208. SO K Y, OH S H. Prolyl isomerase Pin1 regulates cadmium-induced autophagy via ubiquitin-mediated post-translational stabilization of phospho-Ser GSK3 alpha beta in human hepatocellular carcinoma cells. Biochemical Pharmacology, 2015, 98(3): 511-521.DOI:10.1016/j.bcp.2015.09.007. NGUYEN K, WILLMORE W G, TAYABALI A F. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Free Radical Biology and Medicine, 2012, 53: 114-123. DOI:10.1016/j.freeradbiomed.2012.10.381. SO K Y, OH S H. Heme oxygenase-1-mediated apoptosis under cadmium-induced oxidative stress is regulated by autophagy, which is sensitized by tumor suppressor p53. Biochemical and Biophysical Research Communications, 2016, 479(1): 80-85. DOI:10.1016/j.bbrc.2016.09.037. LAWAL A O, MARNEWICK J L, ELLIS E M. Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3-dependent apoptosis in human hepatoma cell line. BMC Pharmacology and Toxicology, 2015, 16: 41-54. DOI:10.1186/s40360-015-0040-y. ALI I, DAMDIMOPOULOU P, STENIUS U, et al. Cadmium-induced effects on cellular signaling pathways in the liver of transgenic estrogen reporter mice. Toxicological Sciences, 2012, 127(1): 66-75. DOI:10.1093/toxsci/kfs077. ZHANG Jun, WANG Yan, FU Lin, et al. Subchronic cadmium exposure upregulates the mRNA level of genes associated to hepatic lipid metabolism in adult female CD1 mice. Journal of Applied Toxicology, 2018, 38(7): 1026-1035. DOI:10.1002/jat.3612. CHEN Yingying, ZHU Jinyong, CHAN K M. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells. Aquatic Toxicology, 2014, 157: 196-206.DOI:10.1016/j.aquatox.2014.10.018. BOROWSKA S, BRZOSKA M M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(6): 982-1017.DOI:10.1111/1541-4337.12221. WINIARSKA-MIECZAN A. Protective effect of tannic acid on the brain of adult rats exposed to cadmium and lead. Environmental Toxicology and Pharmacology, 2013, 36(1): 9-18. DOI:10.1016/j.etap.2013.02.018. CHANG Hongchou, PENG C H, YEH D M, et al. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food and Function, 2014, 5(4): 734-739.DOI:10.1039/c3fo60495k. NI Chenxu, GONG Hong, LIU Ying, et al. Green tea consumption and the risk of liver cancer: a meta-analysis. Nutrition and Cancer, 2017,69(2): 211-220. DOI:10.1080/01635581.2017.1263754. GUPTA R, SHUKLA R K, CHANDRAVANSHI L P, et al. Protective role of quercetin in cadmium-induced cholinergic dysfunctions in rat brain by modulating mitochondrial integrity and MAP kinase signaling. Molecular Neurobiology, 2017, 54(6): 4560-4583.DOI:10.1007/s12035-016-9950-y. MAO Tingchao, HAN Chengquan, WEI Biao, et al. Protective effects of quercetin against cadmium chloride-induced oxidative injury in goat sperm and zygotes. Biological Trace Element Research, 2018,185(2): 344-355. DOI:10.1007/s12011-018-1255-8. NNA V U, USMAN U Z, OFUTET E O, et al. Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride- induced oxidative stress in the uterus and ovaries of female Wistar rats. Food and Chemical Toxicology, 2017, 102: 143-155.DOI:10.1016/j.fct.2017.02.010. SEDKY A, MAHBOUB F, ELSAWY H, et al. Protective potential of quercetin on Cd-induced hepatorenal damage. Polish Journal of Environmental Studies, 2017, 26(5): 2197-2205. DOI:10.15244/pjoes/68954. DONMEZ H H, DONMEZ N, KISADERE I, et al. Protective effect of quercetin on some hematological parameters in rats exposed to cadmium. Biotechnic and Histochemistry, 2019, 295(Suppl 1): 1-6.DOI:10.1080/10520295.2019.1574027. EGBUNG G E, NNA V U, ATANGWHO I J, et al. Quercetin ameliorates cadmium chloride-induced hepatotoxicity in Wistar rats. Toxicology Letters, 2018, 295: S238-S239. DOI:10.1016/j.toxlet.2018.06.992. DE MOURA C F G, RIBEIRO F A P, DE JESUS G P P, et al.Antimutagenic and antigenotoxic potential of grape juice concentrate in blood and liver of rats exposed to cadmium. Environmental Science and Pollution Research, 2014, 21(22): 13118-13126.DOI:10.1007/s11356-014-3257-1. EL-TARRAS A E, ATTIA H F, SOLIMAN M M, et al.Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. International Journal of Immunopathology and Pharmacology, 2016, 29(3): 398-407.DOI:10.1177/0394632016651447. RUIZ P L M, HANDAN B A, DE MOURA C F G, et al. Protective effect of grape or apple juices in bone tissue of rats exposed to cadmium: role of RUNX-2 and RANK/L expression. Environmental Science and Pollution Research, 2018, 25(16): 15785-15792.DOI:10.1007/s11356-018-1778-8. SHAGIRTHA K, PARI L. Hesperetin, a citrus flavonone, attenuates cadmium-induced nephrotoxicity in rat. Biomedicine & Preventive Nutrition, 2011, 1(2): 139-145. DOI:10.1016/j.bionut.2011.02.005. RENUGADEVI J, PRABU S M. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Experimental and Toxicologic Pathology, 2010, 62(2): 171-181. DOI:10.1016/j.etp.2009.03.010. RATHI V K, DAS S, RAGHAVENDRA A P, et al. Naringin abates adverse effects of cadmium-mediated hepatotoxicity: an experimental study using HepG2 cells. Journal of Biochemical and Molecular Toxicology, 2017, 31(8): e21915. DOI:10.1002/jbt.21915. IZAGUIRRY A P, SOARES M B, VARGAS L M, et al. Blueberry(Vaccinium ashei Reade) extract ameliorates ovarian damage induced by subchronic cadmium exposure in mice: potential delta-ALA-D involvement. Environmental Toxicology, 2017, 32(1): 188-196.DOI:10.1002/tox.22225. DAI Lingpeng, DONG Xinjiao, MA Haihu. Antioxidative and chelating properties of anthocyanins in Azolla imbricata induced by cadmium. Polish Journal of Environmental Studies, 2012, 21(4):837-844. DOI:10.1080/03601234.2012.713299. MALEVA M, GARMASH E, CHUKINA N, et al. Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea (Egeria densa (Planch.)Casp.) exposed to cadmium and manganese. Ecotoxicology and Environmental Safety, 2018, 160: 197-206. DOI:10.1016/j.ecoenv.2018.05.031. TOMASZEWSKA E, DOBROWOLSKI P, WINIARSKAMIECZAN A, et al. The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. Experimental and Toxicologic Pathology, 2017, 69(3): 131-141. DOI:10.1016/j.etp.2016.12.003. HAO Maolin, PAN Ning, ZHANG Qinghua, et al. Therapeutic efficacy of chlorogenic acid on cadmium-induced oxidative neuropathy in a murine model. Experimental and Therapeutic Medicine, 2015,9(5): 1887-1894. DOI:10.3892/etm.2015.2367. ABDELAZIZ I, ELHABIBY M I, ASHOUR A A. Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Human and Experimental Toxicology, 2013, 32(4): 362-370. DOI:10.1177/0960327111429136. KOBROOB A, CHATTIPAKORN N, WONGMEKIAT O.Caffeic acid phenethyl ester ameliorates cadmium-induced kidney mitochondrial injury. Chemico-Biological Interactions, 2012,200(1): 21-27. DOI:10.1016/j.cbi.2012.08.026. GONG Pin, CHANG Xiangna, CHEN Xuefeng, et al. Metabolomics study of cadmium-induced diabetic nephropathy and protective effect of caffeic acid phenethyl ester using UPLC-Q-TOF-MS combined with pattern recognition. Environmental Toxicology and Pharmacology,2017, 54: 80-92. DOI:10.1016/j.etap.2017.06.021. ABIB R T, PERES K C, BARBOSA A M, et al. Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food and Chemical Toxicology, 2011, 49(10): 2618-2623.DOI:10.1016/j.fct.2011.07.006. CHEN Jinglou, DU Lifen, LI Jingjing, et al. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.Food and Chemical Toxicology, 2016, 96: 70-78. DOI:10.1016/j.fct.2016.07.030. WANG Min, LEI Yixiong. Effects of tea polyphenols on proliferation and apoptosis of cadmium-transformed cells. International Journal of Clinical and Experimental Medicine, 2015, 8(2): 3054-3062. ROUTRAY W, ORSAT V. Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Comprehensive Reviews in Food Science and Food Safety, 2011, 10(6): 303-320. DOI:10.1111/j.1541-4337.2011.00164.x. DA-COSTA-ROCHA I, BONNLAENDER B, SIEVERS H, et al.Hibiscus sabdariffa L.: a phytochemical and pharmacological review. Food Chemistry, 2014, 165: 424-443. DOI:10.1016/j.foodchem.2014.05.002. MUHAMMAD Y, CHARLES U. Effect of calyx extract of hibiscus sabdariffa against cadmium-induced liver damage. Bayero Journal of Pure and Applied Sciences, 2008, 1(1): 80-82. DOI:10.4314/bajopas.v1i1. ASAGBA S O, ADAIKPOH M A, KADIRI H, et al. Influence of aqueous extract of Hibiscus sabdariffa L. Petal on cadmium toxicity in rats. Biological Trace Element Research, 2007, 115(1): 47-58.DOI:10.1385/BTER:115:1:47. OBIOHA U E, SURU S, OLA-MUDATHIR F, et al. Hepatoprotective potentials of onion and garlic extracts on cadmium-induced oxidative damage in rats. Biological Trace Element Research, 2009,129(1/2/3): 143-156. DOI:10.1007/s12011-008-8276-7. AYAKEME T, IBEH G O, NWINUKA M N, et al. Effects of garlic extract on cadmium-induced toxicity in wistar albino rat. Indian Journal of Drugs and Diseases, 2012, 1(3): 68-73. AMIN A, HAMZA A A, DAOUD S, et al. Spirulina protects against cadmium-induced hepatotoxicity in rats. American Journal of Pharmacology and Toxicology, 2006, 1(2): 21-25. DOI:10.3844/ajptsp.2006.21.25. FINAMORE A, PALMERY M, BENSEHAILA S, et al.Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxidative Medicine and Cellular Longevity, 2017, 2017(2): 3247528.DOI:10.1155/2017/3247528. DUA K K. Antioxidative and antiperoxidative effects of Spirulina platensis against cadmium induced hepatotoxicity in rats. Annals of Biological Research, 2010, 1(2): 121-127. DOI:10.1039/c0fo00163e.
Recent Progress in Understanding the Protective Effect of Phenolics against Cadmium-Induced Liver InjuryHAO Rili, LI Dapeng*
(Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes,College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China)Abstract: Cadmium is a common heavy metal pollutant in the environment and foods, which can cause irreversible damage to human organs, especially liver. Previous studies have found that the mechanism of cadmium-induced liver injury may be related to the occurrence of oxidative stress. Phenolic compounds are ubiquitous in plant-based diets and have strong antioxidant capacity. In recent years, more and more studies have shown that phenolic compounds have significant control effects on cadmium-induced liver injury. This paper reviews recent progress in understanding the protective effect of phenolic compounds against cadmium-induced liver injury, in order to provide a theoretical basis and research ideas for the development and application of phenolic compounds.Keywords: cadmium; plant-based diets; phenolics; oxidative stress; liver damage
收稿日期:2019-04-25基金项目:国家自然科学基金面上项目(31571836);国家自然科学基金青年科学基金项目(31201417);山东省现代农业产业技术体系蜂产业创新团队项目(SDAIT-24-05);山东省“双一流”建设项目(SYT2017XTTD04)第一作者简介:郝日礼(1996—)(ORCID: 0000-0002-8770-526X),女,硕士研究生,研究方向为营养与功能食品。E-mail: rlhao96@163.com*通信作者简介:李大鹏(1973—)(ORCID: 0000-0002-1816-3217),男,教授,博士,研究方向为食品营养与人类健康。E-mail: dpli73@sdau.edu.cnDOI:10.7506/spkx1002-6630-20190425-334中图分类号:TS201.4 文献标志码:A 文章编号:1002-6630(2020)09-0254-09引文格式:郝日礼, 李大鹏. 酚类化合物干预镉致肝损伤的研究进展. 食品科学, 2020, 41(9): 254-262. DOI:10.7506/spkx1002-6630-20190425-334. http://www.spkx.net.cnHAO Rili, LI Dapeng. Recent progress in understanding the protective effect of phenolics against cadmium-induced liver injury. Food Science, 2020, 41(9): 254-262. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-20190425-334.http://www.spkx.net.cn



页: [1]
查看完整版本: 酚类化合物干预镉致肝损伤的研究进展