奥鹏网院作业 发表于 2020-3-26 13:49:57

天津大学2020年春季《运筹学》离线考核(手写作答)

天津大学2020年春季《运筹学》离线考核(手写作答)
运筹学
要求:
一、独立完成,下面已将五组题目列出,请任选其中一组题目作答,每人只答一组题目,多答无效,满分100分;
二、答题步骤:
1.使用A4纸打印学院指定答题纸(答题纸请详见附件);
2.在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1.完成的作业应另存为保存类型是“Word972003”提交
2.上传文件命名为“中心学号姓名科目.doc”
3.文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!
题目如下:
第一组:
计算题(每小题25分,共100分)
1、用标号法求下列网络V1→V7的最短路径及路长。
2、某企业生产三种产品A1、A2、A3。每种产品在销售时可能出现销路好(S1),销路一般(S2)和销路差(S3)三种状态,每种产品在不同销售状态的获利情况(效益值)如表所示,请按乐观法则进行决策,选取生产哪种产品最为合适。

3、下列表是一个指派问题的效率表(工作时间表),其中Ai为工作人员(i=1234)、Bj为工作项目(j=1234),请作工作安排,使总的工作时间最小。

4、下列表是三个不同模型的线性规划单纯形表,请根据单纯形法原理和算法,分别在表中括号中填上适当的数字。
1.计算该规划的目标函数值
2、确定上表中输入,输出变量。
第二组:
计算题(每小题25分,共100分)
1、某企业生产三种产品A1、A2、A3。每种产品在销售时可能出现销路好(S1),销路一般(S2)和销路差(S3)三种状态,每种产品在不同销售状态的获利情况(效益值)如表1所示,请按乐观法则进行决策,选取生产哪种产品最为合适。
表1
2、已知运输问题的运价表和发量和收量如表2所示,请用最小元素法求出运输问题的一组解。
表2
3、下列表3是一个指派问题的效率表(工作时间表),其中Ai为工作人员(i=1234)、Bj为工作项目(j=1234),请作工作安排,使总的工作时间最小。
表3
4、有一化肥厂用两种原料AB生产CDE三种化肥,根据市场调查某地区各种化肥每天最少需求分别为100吨,26吨,130吨。该厂每天可供的原料分别为200吨和240吨。单位成品化肥所耗费的原料及销售利润如下表。问每天应生产多少各类化肥,使该厂利润最大。要求建立线性规划模型,不作具体计算。
化肥\原料AB最低需要量单位利润
C1210010
D1.51.22615
E4113011
供应量200240
第三组:
计算题(每小题25分,共100分)
1.A、B两人分别有10分(1角)、5分、1分的硬币各一枚,双方都不知道的情况下各出一枚,规定和为偶数,A赢得8所出硬币,和为奇数,8赢得A所出硬币,试据此列出二人零和对策模型,并说明此游戏对双方是否公平。
2、用图解法求解
maxz=6x1+4x2
s.t.
3、用单纯形法求解
maxz=70x1+30x2
s.t.
4.某企业要用三种原材料A、B、C生产出出三种不同规格的产品甲、乙、丙。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表1和表2。该企业应如何安排生产,使利润收入为最大?
表1
产品名称规格要求单价(元/kg)
甲原材料A不少于30%
原材料B不超过45%60
乙原材料B不少于25%
原材料C不超过50%50
丙不限35
表2
原材料名称每天最多供应量(kg)单价/(元/kg)
A30055
B30025
C20040
第四组:
计算题(每小题25分,共100分)
1、用图解法求解
minz=-3x1+x2
s.t.
2、用单纯形法求解
maxz=70x1+30x2
s.t.
3、用单纯形法求解
maxz=7x1+12x2
s.t.
4.某企业要用三种原材料A、B、C生产出出三种不同规格的产品甲、乙、丙。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表1和表2。该企业应如何安排生产,使利润收入为最大?
表1
产品名称规格要求单价(元/kg)
甲原材料A不少于30%
原材料B不超过45%60
乙原材料B不少于25%
原材料C不超过50%50
丙不限35
表2
原材料名称每天最多供应量(kg)单价/(元/kg)
A30055
B30025
C20040
第五组:
计算题(每小题25分,共100分)
1、下列表是三个不同模型的线性规划单纯形表,请根据单纯形法原理和算法,分别在表中括号中填上适当的数字。
1.计算该规划的目标函数值
2.确定上表中输入,输出变量。
2、已知一个线性规划原问题如下,请写出对应的对偶模型
3、设有某种肥料共6个单位,准备给4块粮田用,其每块粮田施肥数量与增产粮食的关系如下表所示。试求对每块田施多少单位重量的肥料,才能使总的粮食增产最多。
施肥粮田
1234
120251828
242453947
360576165
475657874
585709080
690739585
4、求下面问题的对偶规划
极大化

页: [1]
查看完整版本: 天津大学2020年春季《运筹学》离线考核(手写作答)